1、 QP OF ED CBA三角形三条高线交于一点的证明?证法一:运用同一法证三条高两两相交的交点是同一点。已知:ABC 的两条高 BE、CF 相交于点 O,第三条高 AD 交高 BD 于点Q,交高 CF 于点 P。求证:P、Q、O 三点重合证明:如图,BEAC,CF ABAEB = AFC = 90又BAE = CAFABE ACF ,AFECB即 ABAF = ACAE又ADBCAEQ ADC,AFP ADB ,AQDE BPF即 ACAE = ADAQ, ABAF = ADAPABAF = ACAE,ACAE = ADAQ,ABAF = ADAPADAQ = ADAPAQ = AP点 Q、
2、P 都在线段 AD 上点 Q、P 重合AD 与 BE、AD 与 CF 交于同一点两条不平行的直线只有一个交点BE 与 CF 也交于此点点 Q、P、O 重合。证法二:连结一顶点和两高交点的线垂直于第三边,用四点共圆性质。3 21OFED CBA已知:ABC 的两条高 AD、BE 相交于点 O,第三条高 CF 交高 AB 于点F,连结 CO 交 AB 于点 F。求证:CFAB。证明:ADBC 于 E,BEAC 于 EA、B、D、E 四点共圆1ABE同理212ABEABE+ BAC90,2+ BAC90即 CFAB。注:证法一和证法二是证明共点线的常用方法。证法三:证两条高的交点在第三条高线上,建立
3、直角坐标系运用代数方法证明。证明:如图 6,以直线 BC 为 x 轴,高 AD 为 y 轴,建立直角坐标系,设A(0 , a) , B(b , 0) , C(c , 0),由两条直线垂直的条件 abkackABCFABE1,1则三条高的直线方程分别为: )3(CF2E)1(0Dcxabyx:解(2)和(3)得 0)(,)(xcbcxab)0,(cb 0xxCDOyABFELNM F ED CBAOF ED CBA这说明 BE 和 CF 得交点在 AD 上,所以三角形的三条高相交于一点。注:有时候考虑直角坐标系这一有力的数形结合工具可以有效地解决问题。证法四:转化为证明另一个三角形的三条中垂线(
4、或中线)交于一点。已知:AD、BE、CF 是ABC 的三条高。求证:AD、BE、CF 相交于一点。证明:过点 A、B、C 分别作 BC、AC、AB 的平行线 ML、MN、NLAMBC ,MB AC四边形 AMBC 是平行四边形AMBC同理,ALBC AMALADMLAD 是 ML 的垂直平分线同理,BE、CF 分别是 MN、NL 的垂直平分线而三角形的三条垂直平分线相交于一点AD、BE、CF 相交于一点。注:三角形的三条中线(可中垂线、角平分线)相交于一点,这事实学生容易理解,也不难证明,把证明三角形的三条垂线相交于一点的问题转化为另一三角形的三条中线(中垂线)相交于一点,这种化陌生为熟悉、化
5、难为易的转化方法必须让学生理解掌握。证法五:运用锡瓦(Ceva)定理证明。已知:AD、BE、CF 是ABC 的三条高。求证:AD、BE、CF 相交于一点。证明:如图,ADBC 于 E,BEAC 于 E ABD CBF (1)CBAFD同理,由ADC BEC 得 , (2)E由AFC AEB (3)ABCF三式相乘得 1ABCAEFD即 1EAD、BE、CF 相交于一点。注:锡瓦定理是证明共点线的有力工具,虽然中学不作要求,但对于学有余力的学生不妨引导他们自己研究,激发他们的学习兴趣。锡瓦定理可以用梅涅劳(Menelaus)定理证明,而梅涅劳定理可以由平行线分线段成比例定理轻松得到。在适当情况下适当的启发有利于学生思维的扩散,有利于培养学生的创新能力。