收藏 分享(赏)

浅谈二次函数在高中阶段的应用.doc

上传人:无敌 文档编号:311517 上传时间:2018-03-27 格式:DOC 页数:3 大小:150KB
下载 相关 举报
浅谈二次函数在高中阶段的应用.doc_第1页
第1页 / 共3页
浅谈二次函数在高中阶段的应用.doc_第2页
第2页 / 共3页
浅谈二次函数在高中阶段的应用.doc_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、高考资源网浅谈二次函数在高中阶段的应用初中教材中,对二次函数作了较详细的研究,由于初中学生基础薄弱,又受其接受能力的限制,这部份内容的学习多是机械的,很难从本质上加以理解。进入高中以后,尤其是高三复习阶段,要对他们的基本概念和基本性质(图象以及单调性、奇偶性、有界性)灵活应用,对二次函数还需再深入学习。一、进一步深入理解函数概念初中阶段已经讲述了函数的定义,进入高中后在学习集合的基础上又学习了映射,接着重新学习函数概念,主要是用映射观点来阐明函数,这时就可以用学生已经有一定了解的函数,特别是二次函数为例来加以更深认识函数的概念。二次函数是从一个集合 A(定义域)到集合 B(值域)上的映射 ,使

2、得集合 B 中的元 与集合 A 的元素 X 对应,记为 这里 ax2+bx+c 表示对应法则,又表示定义域中的元素 X 在值域中的象,从而使学生对函数的概念有一个较明确的认识,在学生掌握函数值的记号后,可以让学生进一步处理如下问题:类型 I:这里不能把 理解为 x=x+1 时的函数值,只能理解为自变量为 x+1 的函数值。类型:设这个问题理解为,已知对应法则 下,定义域中的元素 x+1 的象是 x24x+1,求定义域中元素 X 的象,其本质是求对应法则。一般有两种方法:(1 )把所给表达式表示成 x+1 的多项式。(2 ) 变量代换:它的适应性强,对一般函数都可适用。二、二次函数的单调性,最值

3、与图象。在高中阶阶段学习单调性时,必须让学生对二次函数 y=ax2+bx+c 在区间(,及,+ )上的单调性的结论用定义进行严格的论证,使它建立在严密理论的基础上,与此同时,进一步充分利用函数图象的直观性,给学生配以适当的练习,使学生逐步自觉地利用图象学习二次函数有关的一些函数单调性。类型:画出下列函数的图象,并通过图象研究其单调性。(1 ) y=x2+2|x1|1 (2 ) y=|x21| (3 ) = x2+2|x|1这里要使学生注意这些函数与二次函数的差异和联系。掌握把含有绝对值记号的函数用分段函数去表示,然后画出其图象。类型设求:g(t)并画出 y=g(t)的图象解:首先要使学生弄清楚

4、题意,一般地,一个二次函数在实数集合 R 上或是只有最小值或是只有最大值,但当定义域发生变化时,取最大或最小值的情况也随之变化,为了巩固和熟悉这方面知识,可以再给学生补充一些练习。如:y=3x 25x+6(-3x1) ,求该函数的值域。三、二次函数的知识,可以准确反映学生的数学思维:解题思路:本题要证明的是 ,由题中所提供的信息可以联想到: ,说明抛物线与直线 y=x 在第一象限内有两个不同的交点;方程 (x)x=0 可变为 ax2+(b1)x+1=0 ,它的两根为 x1,x2,可得到 x1,x2 与 a.b.c 之间的关系式,因此解题思路明显有三条图象法利用一元二次方程根与系数关系利用一元二

5、次方程的求根公式,辅之以不等式的推导。现以思路为例解决这道题:()先证明 ,令 ,因为 x1,x2 是方程 的根,所以能因为 0x1x2,所以 ,当根据韦达定理,有 , 又, ,根据二次函数的性质,曲线 是开口向上的抛物线,因此,函数 在闭区间0 ,x 1上的最大值在边界点 x=0 或 x=x1 处达到,而且不可能在区间的内部达到,由于 ,所以当 x(0,x 1)时 ,函数(x)的图象的对称轴为直线 x=,且是唯一的一条对称轴,因此,根据违达定理得,二次函数,它有丰富的内涵和外延。作为最基本的幂函数,可以以它为代表来研究函数的性质,可以建立起函数、方程、不等式之间的联系,可以偏拟出层出不穷、灵活多变的数学问题,考查学生的数学基础知识和综合数学素质,特别是能从解答的深入程度中,区分出学生运用数学知识和思想方法解决数学问题的能力。二次函数的内容涉及很广,本文只讨论至此,希望各位同仁在高中数学教学中也多关注这方面知识,使我们对它的研究更深入 w.w.w.k.s.5.u.c.o.mw.w.w.k.s.5.u.c.o.mw.k.s.5.u.ck.s.5.u

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报