1、检验计算公式:t当总体呈正态分布,如果总体标准差未知,而且样本容量 30)也可写成:。Xtn在这里, 为样本平均数与总体平均数的离差统计量;t为样本平均数;X为总体平均数;为样本标准差;X为样本容量。n例:某校二年级学生期中英语考试成绩,其平均分数为 73分,标准差为17分,期末考试后,随机抽取 20人的英语成绩,其平均分数为 79.2分。问二年级学生的英语成绩是否有显著性进步?检验步骤如下:第一步 建立原假设 =730H 第二步 计算 值t79.231.61Xn第三步 判断因为,以 0.05为显著性水平, ,查 值表,临界值19dfnt,而样本离差的 1.63小与临界值 2.093。所以,接
2、受原假设,0.5(19)23tt即进步不显著。2.双总体 检验t双总体 检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。t双总体 检验又分为两种情况,一是相关样本平均数差异的显著性检验,用于检验匹配而成的两组被试获得的数据或同组被试在不同条件下所获得的数据的差异性,这两种情况组成的样本即为相关样本。二是独立样本平均数的显著性检验。各实验处理组之间毫无相关存在,即为独立样本。该检验用于检验两组非相关样本被试所获得的数据的差异性。现以相关检验为例,说明检验方法。因为独立样本平均数差异的显著性检验完全类似,只不过 。0r相关样本的 检验公式为:t。1212XXn在这里, , 分别为两样本
3、平均数;12, 分别为两样本方差;1X2为相关样本的相关系数。例:在小学三年级学生中随机抽取 10名学生,在学期初和学期末分别进行了两次推理能力测验,成绩分别为 79.5和 72分,标准差分别为9.124,9.940。问两次测验成绩是否有显著地差异?检验步骤为:第一步 建立原假设 =0H 12第二步 计算 值t1212XXtn= 2279.59.4.04.9.401=3.459。第三步 判断根据自由度 ,查 值表 , 。由于实9dfnt0.5(9)260.1(9)325t际计算出来的 =3.4953.250= ,则 ,故拒绝原假设。t0.1()P结论为:两次测验成绩有及其显著地差异。由以上可以
4、看出,对平均数差异显著性检验比较复杂,究竟使用 检验还Z是使用 检验必须根据具体情况而定,为了便于掌握各种情况下的 检验或 检t t验,我们用以下一览表图示加以说明。已知时,用XZn单总体未知时,用(1)tdfSn在这里, 表示总体标准差的估计量,它与样本标准差 的关系是:S X1XSn, 已知且是独立样本时,用12 12n是独立大样本时,用 12XZ双总体, 未知12是独立小样本时,用122112()()()XtnSn12()dfn是相关样本时,用 1221XtSrSn()df以上对平均数差异的显著性检验的理论前提是假设两个总体的方差是相同的,至少没有显著性差异。对两个总体的方差是否有显著性差异所进行的检验称为方差齐性检验,即必须进行 检验。F