收藏 分享(赏)

专题讲座(数学思想方法与初中数学教学).doc

上传人:tangtianxu1 文档编号:3081354 上传时间:2018-10-02 格式:DOC 页数:39 大小:486KB
下载 相关 举报
专题讲座(数学思想方法与初中数学教学).doc_第1页
第1页 / 共39页
专题讲座(数学思想方法与初中数学教学).doc_第2页
第2页 / 共39页
专题讲座(数学思想方法与初中数学教学).doc_第3页
第3页 / 共39页
专题讲座(数学思想方法与初中数学教学).doc_第4页
第4页 / 共39页
专题讲座(数学思想方法与初中数学教学).doc_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、专题讲座数学思想方法与初中数学教学嵇文红 北京市芳星园中学一、数学思想方法在初中数学教学中的重要性在初中数学课程标准的总体目标中,明确地提出了:“通过义务教育阶段的数学学习,学生应能够获得适应未来社会生活和进一步发展所必需的重要数学知识以及基本的数学思想方法和必要的应用技能”。新课程把基本的数学思想方法作为基础知识的重要组成部分,在数学课程标准中明确地提出来,这不仅是课程标准体现义务教育性质的重要表现,也是对学生实施创新教育、培养创新思维的重要保证。什么是数学思想方法?数学思想是对数学知识和方法本质的认识,是解决数学问题的根本策略,它直接支配着数学的实践活动;数学方法是解决问题的手段和工具,是

2、解决数学问题时的程序、途径,它是实施数学思想的技术手段。数学思想带有理论性特征,而数学方法具有实践性的特点,数学问题的解决离不开以数学思想为指导,以数学方法为手段。数学思想方法是从数学内容中提炼出来的数学学科的精髓,是数学素养的重要内容之一,数学思想方法揭示了概念、原理、规律的本质,是沟通基础与能力的桥梁。 在初中数学教学中,常见的数学思想有:转化思想、方程思想、数形结合思想、分类讨论思想等等;常见的数学方法有:待定系数法、配方法、换元法、分析法、综合法、类比法等等。在初中数学教学中,渗透数学思想方法,可以克服就题论题,死套模式,数学思想方法可以帮助我们加强思路分析,寻求已知和未知的联系,提高

3、分析解决问题的能力,从而使思维品质和能力有所提高。提高学生的数学素质、必须紧紧抓住数学思想方法这一重要环节,因为数学思想方法是提高学生的数学思维能力和数学素养的重要保障。在初中数学教材中集中了大量的优秀例题和习题,它们所体现的数学知识和数学方法固然重要,但其蕴涵的数学思想却更显重要,作为初中数学教师,要善于挖掘例题、习题的潜在功能。在初中数学教学中,教师应向学生提供充分从事数学活动的机会,帮助学生在自主探索和合作交流的过程中,真正理解和掌握基本的数学知识与技能、数学思想和方法,获得广泛的数学活动经验。学生是数学学习的主人,教师是数学学习的组织者、引导者与合作者。学生只有领会了数学思想方法,才能

4、有效地应用知识,形成能力,从而为解决数学问题、进行数学思维起到很好的促进作用。因此,在初中数学教学中,教师必须重视对学生进行数学思想方法的渗透与培养。二、几种常见的数学思想方法在初中数学教学中的应用(一)渗透转化思想,提高学生分析解决问题的能力所谓“转化思想”是指把待解决或未解决的问题,通过转化,归结到已经解决或比较容易解决的问题中去,最终使问题得到解决的一种思想方法。转化思想是初中数学中常见的一种数学思想,它的应用十分广泛,我们在数学学习过程中,常常把复杂的问题转化为简单的问题,把生疏的问题转化为熟悉的问题。数学问题的解决过程就是一系列转化的过程,转化是化繁为简,化难为易,化未知为已知的有力

5、手段,是解决问题的一种最基本的思想,对提高学生分析解决问题的能力有积极的促进作用。我们对转化思想并不陌生,中学数学中常用的化高次为低次、化多元为一元,都是转化思想的体现。在具体内容上,有加减法的转化、乘除法的转化、乘方与开方的转化、数形转化等等。例如:初中数学“有理数的减法”和“有理数的除法”这两节教学内容中,教材是通过“议一议”的形式,使学生在自主探究和合作交流的过程中,经历把有理数的减法转化为加法、把有理数的除法转化为乘法的过程,“减去一个数等于加上这个数的相反数”,“除以一个数等于乘以这个数的倒数”,这个地方虽然很简单,但却充分体现了把“没有学过的知识”转化为“已经学过的知识”来加以解决

6、,学生一旦掌握了这种解决问题的策略,今后无论遇到多么难、多么复杂的问题,都会自然而然地想到把“不会的”转化为“会的”、“已经掌握的”知识来加以解决,这符合学生原有认知规律,作为教师,我们不能因为简单而忽视它的教学,实践告诉我们,往往是越简单、越浅显的例子,越能引起学生的认同,所以我们不能错过这一绝佳的提高学生的思维品质的机会。再如北京市义务教育课程改革实验教材数学第 13 册第 4 章中对图形的认识,它实际上是“空间与图形”的最基本部分。教材在编排设计上是围绕认识基本几何体、发展学生空间观念展开的,在过程上是让学生经历图形的变化、展开与折叠等数学活动过程的,在活动中引导学生认识常见的几何体以及

7、点、线、面和一些简单的平面图形,通过对某些几何体的主视图、俯视图、左视图的认识,在平面图形与立体图形的转化中发展学生的空间观念。在授课过程中要特别注意图形的转化思想的渗透,在实际操作中,因为大部分学生在小学时就积累一定的感性处理方法,我们要注意的就是在学生原有知识结构的基础上,将其上升为理论高度,引导学生归纳概括得出一般性的结论:在初中阶段,绝大部分立体图形的问题都可以转化为平面图形的问题,从而使学生真正体会到立体与平面的相互转化思想。又如在解方程组时,通过消元这个手段,把二元一次方程组转化为一元一次方程去解;在解多边形问题时,又是通过添加辅助线这个手段,把多边形的问题转化为三角形的问题加以解

8、决等等。数学中的有理数和无理数、整式和分式、已知和未知、特殊和一般、常量和变量、整体和局部等处处都蕴涵着转化这一辩证思想。因此,在初中数学教学中,应有意识地渗透转化思想。如在学习分式方程时,不能只简单介绍分式方程的概念和解法,教学时,应让学生充分经历整式方程与分式方程的观察、比较、分析、探索过程,启发学生说出分式方程的解题基本思想,学生在经历了充分的探索后,自然认识到:通过把分式方程两边都乘以最简公分母,去掉分母,就可以把分式方程转化为整式方程,学生感悟到分式方程与整式方程概念和解法的实质后,会收到一种居高临下,深入浅出的教学效果。因此,在初中数学教学中,要注重渗透转化思想,可以说转化思想是科

9、学世界观在数学中的体现,是最重要的数学思想之一,不仅可以培养学生的科学意识,而且可以提高学生的观察能力、探索能力和分析解决问题的能力。(二)渗透数形结合的思想方法,提高学生的数形转化能力和迁移思维的能力恩格斯曾说过:“纯数学的对象是现实世界的空间形式和数量关系”。而“数”和“形”是数学中两个最基本的概念。“数”是数量关系的体现,而“形”则是空间形式的体现。它们两者既有对立的一面,又有统一的一面。我们在研究数量关系时,有时要借助于图形直观地去研究,而在研究图形时,又常常借助于线段或角的数量关系去探求。数形结合思想是指将数与图形结合起来解决问题的一种思维方式。数和式是问题的抽象和概括、图形和图像是

10、问题的具体和直观的反映。因此,数和形是研究数学的两个侧面,利用数形结合,常常可以使所要研究的问题化难为易,使复杂问题简单化、抽象问题具体化。正如著名数学家华罗庚所说的那样:“数无形,少直观,形无数,难入微”,这句话阐明了数形结合思想的重要意义。在初中代数列方程解应用题教学中,很多例题都采用了图示法进行分析,在教学过程中要充分利用图形的直观性和具体性,引导学生从图形上发现数量关系,找出解决问题的突破口,学生掌握了数形结合这一思想要比掌握一个公式或一种具体方法更有价值,对解决问题更具有指导意义。又如,计算:1+3=?1+3+5=?1+3+5+7=?1+3+5+7+9=?并根据计算结果,探索规律。在

11、这道题的教学中,首先应让学生思考:从上面这些算式中你能发现什么?让学生经历观察(每个算式和结果的特点)、比较(不同算式之间的异同),归纳(可能具有的规律)、提出猜想的过程。在探索过程中鼓励学生进行相互合作交流,提供如下的帮助:列出一个点阵,用图形的直观来帮助学生进行猜想。这就是典型的把数量关系问题转化到图形中来完成的题型,充分体现了数形结合思想。再如在讲“圆与圆的位置关系”时,可自制圆形纸板,进行运动实验,让学生首先从形的角度认识圆与圆的位置关系,然后可激发学生积极主动探索:两圆的位置关系反映到数上有何特征?这种借助于形通过数的运算推理研究问题的数形结合思想,在教学中要不失时机地渗透,这样不仅

12、可以提高学生的迁移思维能力,还可以培养学生的数形转换能力和多角度思考问题的习惯。此外,数学教学中,我们正是借助数形结合的载体数轴,学习研究了数与点的对应关系,相反数、绝对值的定义,有理数大小比较的法则等,利用数形结合思想大大减少了引进这些概念的难度。数形结合思想的渗透不能简单的通过解题来实现和灌输,应该落实在课堂教学的学习探索过程中,我在讲“相反数”这节课时,首先提出问题:“在上体育课时,体育李老师请小明和小强分别站在李老师的左右两边(三人在同一条直线上),并与李老师相距 1 米。你能说出小明、小强与李老师的位置关系有什么相同点和不同点吗?如果李老师所站的位置是数轴的原点,你能把小明、小强所站

13、的位置用数轴上的点 A、 B 表示出来吗?它们在数轴上的位置有什么关系?”让学生动手实践,在数轴上分别确定表示这些数的点。 观察并思考:这些点在位置上有怎样的特征。引导学生归纳总结,形成相反数的概念,在此基础上继续提出问题:若两个数互为相反数,从“数、形”的角度看,它们有什么相同点和不同点呢?学生思考得到:从“数”的角度看:若两个数互为相反数,则只有符号不同。教师强调:只有、两个、互为。从“形”的角度看:相同点是它们到原点的距离相等;不同点是两个点分别在数轴原点的两侧。之后,进一步引导学生观察数轴,是否所有的相反数都成对出现?有特殊的吗?学生通过讨论得出:除 0 以外,相反数是成对出现的。本节

14、课借助数轴,帮助学生理解相反数的概念,进一步渗透数形结合的思想。教学中,从学生身边的生活实例入手,先从互为相反数的两数在数轴上的特征,即它们分别位于原点的两旁,且与原点距离相等的实例出发,让学生带着问题观察数轴上的点,鼓励学生用自己的语言说出猜想,揭示这两数的几何形象。充分利用计算机课件的直观性帮助学生验证猜想,增强对相反数概念的感性认识,充分利用数轴帮助思考,把一个抽象的相反数的概念,化为直观的几何形象。在这种情况下给出互为相反数的定义:只有符号不同的两个数称互为相反数。特别地规定:0 的相反数是 0。学生从“数”和“形”两个方面认识相反数概念的本质特征,体会数形结合的思想,显得自然亲切,水

15、到渠成,同时也让学生在数形结合的思想方法的引领下感受到了成功,初步领略和尝试了它的功用,是一个非常好的渗透背景。在初中学习函数知识的时候,更是借助于函数的图象来探讨函数的知识,这是数形结合思想的最生动的应用。下面以北京市义务教育课程改革实验教材数学第 16 册第 15 章第6 节“一次函数的性质”的教学为例,谈谈教学中的一些设计与感受。1教学背景分析本节课在学生学习了一次函数的概念、一次函数的解析式、一次函数的图象等知识的基础上,重点研究一次函数的性质。一次函数的学习,给出了研究函数的基本模式,对今后研究反比例函数、二次函数等具有重要的示范作用。一次函数的性质是本章知识的核心内容,尤其是探究一

16、次函数性质的过程,对培养学生的观察力、抽象概括能力以及“数形结合”的意识具有促进作用。因此,我确定了本节课的教学重点是:一次函数的性质。我所任教的初二年级学生对合作探究学习非常感兴趣,敢于大胆发表自己的见解和看法,通过完成课前布置的作业,学生已掌握一次函数图象的画法,初步感受到一次函数y=kx+b( k0)中 k、 b 对函数图象具有一定的影响,这对于本节课的学习很有帮助,但由于学生识图能力、数形结合意识和抽象归纳能力较弱,因此,我确定了本节课的教学难点是:一次函数性质的探索与应用。根据数学课程标准中关于“一次函数的性质”的教学要求,和对教材、学生的分析,结合我班学生已有的经验和知识基础,我确

17、定了本节课的教学目标:()理解一次函数 y=kx b( k0 ) 的性质(增减性),会用一次函数性质解决简单问题;()经历观察、归纳、探索一次函数性质的过程,体会数形结合的思想方法,提高观察、识图能力;()在合作交流活动中,享受探究发现知识的乐趣,培养学生勇于探索和勤于思考的精神。2教学过程的设计创设情境,导入新课我用多媒体出示曾经探究过的以地铁 5 号线为背景的实际问题,得到了路程 s(公里)与行驶时间 t(小时)之间的函数关系式为: 。观察地铁行驶的过程,并结合这个函数的图象,学生很容易发现:距离宋家庄的路程 s(公里)随着行驶时间 t(小时)的增加而减少。我适时地追问学生:你知道这是为什

18、么吗?本阶段从学生身边的生活实例入手,激发学生发现问题、探究问题、解决问题的欲望。合作探究,学习新知我采用“小组讨论,探索发现展示交流,总结规律直观验证,归纳性质解决问题,反思感悟”的模式,层层深入展开教学。小组讨论,探索发现由于学生在课前已经完成了画四组一次函数图象的作业(作业附在后面),首先,我和学生一起订正、修改、完善作业,得到四组正确的函数图象。接着,我把学生分成小组,围绕作业中的探究思考问题,进行充分地讨论交流,从而发现规律。问题 1:每组函数的解析式有什么共同特点?问题 2:从每组函数图象中,你发现了哪些规律?参与学生讨论,对于发现规律的学习小组,给予及时的鼓励表扬,并鼓励他们用简

19、练的语言,归纳概括所发现的规律。对于没有发现规律的学习小组,从数、形两个角度给予启发引导,帮助他们发现规律。本阶段通过学生小组讨论,合作交流,引导学生充分经历观察、分析、猜想、发现规律的探索过程,充分渗透数形结合思想。展示交流,总结规律在学生分小组进行充分讨论,发现规律的基础上,我请小组代表阐述本组合作交流、探究发现的规律,并运用实物投影进行展示交流。针对每个小组的发言,我和学生共同进行修改、补充和完善,总结规律得到: k 值相同, b 值变化时,这组直线平行; k 值变化, b 值相同时,这组直线经过点(0, b);当 k0 时,直线呈现出“左低右高”的变化趋势;当 k0(或 k0 时, y

20、 随 x 的增大而增大;当 k0 时, y 随 x 的增大而减小。本阶段通过学生深入思考,直观感受,探究发现一次函数性质的活动,培养学生抽象、归纳、概括能力,进一步深入体会数形结合的思想。解决问题,反思感悟在归纳得出一次函数的性质后,我问学生:你现在能解决引例中提出的问题吗?问题:在一次函数 中,为什么 s 随着 t 的增加而减少呢?学生独立思考,回答问题,在一次函数 中,由于400,根据一次函数的性质,可知:距宋家庄的路程 s(公里)随行驶时间 t(小时)的增加而减少。其他学生补充完善后,达成共识:一次项系数的符号起决定性作用。接着,我引导学生归纳小结,反思感悟,得到:正确掌握一次函数 y=

21、kx+b( k )图象的性质是解决问题的关键。本阶段通过学生小组讨论、展示交流等活动,引导学生经历观察分析、猜想验证、归纳概括一次函数性质的探究过程,得出一次函数的性质,充分感受数形结合的数学思想,发展学生合情推理能力。应用知识,提高能力本阶段通过选取由易到难不同层次的练习,从不同的角度(直接应用、逆向应用、变式应用、开放应用),使学生逐步掌握一次函数的性质及简单应用,渗透数形结合的思想,培养学生思维的灵活性、发散性,体验解题策略的多样性。首先,我安排了第一组练习“比一比,谁最棒!” 在一次函数 y=3 5x 的图象中, y 随 x 的增大而_; 在一次函数 y=(a2+1) x4 的图象中,

22、 y 随 x 的增大而 ; 在一次函数 y=(m2) x+1 的图象中, y 随 x 的增大而减小,则 m;_;在一次函数 y=( k3) x 2 的图象中, y 随 x 的增大而减小,请你写出一个满足上述条件的 k 值_;在一次函数 y=kx b 中,如果它的图象不经过第一象限,那么k_, b_。第题是一次函数性质的直接应用,目的是使学生熟悉一次函数的性质;第题需要先确定 a2+10 后,再直接应用一次函数的性质解决问题,目的是使学生逐步理解一次函数性质;第题是一次函数性质的逆向应用,目的是使学生从不同的角度理解一次函数的性质;第题,它是一次函数性质的开放应用,目的是使学生深入、透彻理解一次

23、函数的性质;第题是“由形想数”,培养学生数形结合的思想。以上题目,采用课堂竞赛的形式组织学生完成,由学生独立思考后进行口答,并说明理由,其他学生补充、修改,我及时给予鼓励评价,并强调在解题中注意用数形结合的思想来思考问题。本阶段通过“比一比,谁最棒”这个练习,激发学生学习积极性,使学生从不同的角度,逐步理解、掌握一次函数的性质,体会数形结合思想。接着,安排第二个练习“试一试,你能行!”在一次函数 的图象上有两点 A 和 B ,比较 与 的大小关系。此题由学生独立思考解答后,分小组进行讨论,交流不同的解题思路,老师参与学生讨论,及时发现、收集不同的解题方法,并利用投影展示学生不同的解题思路过程,

24、学生可能会有以下方法:预案 1:用一次函数的性质解决;预案 2:用函数图象的方法比较;预案 3:用代入求值的方法比较。对于学生中出现的不同解题方法,引导学生共同探究解题方法的优劣,进一步明确正确掌握一次函数 y=kx+b( k )的性质是解题的关键。本阶段通过一题多解,培养学生思维的灵活性、发散性,体验解题策略的多样性,加深巩固掌握一次函数 y=kx+b( k )的性质,深入体会数形结合思想。课堂小结,回顾知识为了使学生对本节课所学内容有一个整体的感知,向学生提出三个问题:本节课:我学会了我经历了我感触最深(最困惑)的是学生在自由讨论、发言补充的过程中,回顾了本节课的学习内容和重点。结合学生的

25、发言,我引导学生进一步从知识与技能、过程与方法等方面进行归纳总结。生活中处处有数学,要善于发现问题、解决问题,掌握一次函数 y=kx+b( k )的性质是解决某些问题的关键。“观察、比较、分析、归纳、猜想、验证”是探究解决问题常用的策略;“数形结合”是解决问题常用的数学思想方法。本阶段通过学生小结,回顾知识,培养学生的归纳概括能力以及善于反思的能力,进一步体会“数形结合”的数学思想方法。本节课是在学生已经掌握一次函数的概念、图象并自主完成学案的基础上,从学生身边的生活实例入手,通过小组合作交流、展示汇报,经历观察、分析、猜想、归纳、发现一次函数性质的探究过程,通过几何画板的直观演示,增强对一次

26、函数性质的感性认识,体会数形结合的思想。通过选取不同层次的例题和练习,培养学生思维的灵活性、发散性,体会多角度、多策略解决问题的方法,使不同的学生得到不同的发展。将抽象的数量关系形象化,具有直观性强、易理解、易接受的作用,将直观图形数量化,转化成数学运算,常会降低难度,并可对知识的理解达到更深刻的程度,所以数学教学中,突出数形结合的思想,不仅是提供解决问题的一种手段,而且加深了对数学实质的认识。我们一定要通过课堂的教学、习题的讲解,使学生充分地理解数中有形、形中有数、数形是紧密联系的,从而得到数形之间的对应关系,并引导学生应用数形结合的思想方法学习数学知识、解决数学问题。在数学教学中,突出数形

27、结合思想,有利于学生从不同的侧面加深对问题的认识和理解,提供解决问题的方法,也有利于培养学生实际问题转化为数学问题的能力和迁移思维的能力。 渗透分类讨论的思想方法,培养学生全面观察事物、灵活处理问题的能力分类讨论思想是自然科学乃至社会科学研究中的基本逻辑方法,当被研究的问题包含多种可能的情况不能一概而论时,就要按照可能出现的各种情况进行分类讨论,从而得出各种情况下的结论,这种处理问题的思维方法就是分类讨论思想。分类思想已渗透到中学数学的各个方面,如概念的定义、定理的证明、法则的推导等,也渗透到问题的具体解决之中,如含有绝对值符号的代数式的处理、根式的化简、图形的讨论等,这些问题若不分类讨论,就

28、会无从着手或顾此失彼,导致错误的发生。比如,在有关绝对值的概念中,当去掉绝对值符号时,便要把绝对值内的字母分大于 0,小于 0,等于 0 三种情况进行讨论;若已知 =3, =2,求 的值。在解这道题时,由 =3,得到 或 ,由 =2,得到 或 。因此,对于 的取值,应分四种情况讨论,当 , 时, 的值为 5;当 , 时, 的值为1;当 , 时, 的值为1;当 , 时, 的值为5,即的值为 5;1;1;5。在解这个数学问题时,由于它的结果可能不唯一,因此需要对可能出现的情况一一加以讨论。在运用分类讨论思想研究问题时,必须做到“不重、不漏”,而且要按照相同的标准进行讨论,只有掌握了分类讨论思想,在

29、解题时才不会出现漏解的情况。在渗透分类讨论思想的过程中,首要的是分类。教师要培养学生分类的意识,然后才能引导学生在分类的基础上进行讨论。我们仔细分析教材的话应该不难发现,教材对于分类讨论思想的渗透是一直坚持而又明显的。比如在研究相反数、绝对值、有理数的乘法运算的符号法则等都是按有理数分成正数、负数、零三类分别研究的;在研究加、减、乘、除四种运算法则时也是按照同号、异号、与零运算这三类分别研究的;而在初中几何教学中,用分类讨论思想进行了角的分类、点和直线的位置关系的分类、两条直线位置关系的分类;在函数教学中将函数图象分为开口方向向上、向下,单调递增、递减来进行研究;在圆的教学中按圆心距与两圆半径

30、之间的大小关系将两圆的位置关系进行了分类。从功能上看,这种分类讨论思想可以避免漏解、错解情况的出现,从学生的思维品质上看,分类讨论思想有利于培养学生的思维严谨性与逻辑性。渗透分类讨论的思想方法,对培养学生全面观察事物、灵活处理问题的能力有积极促进作用。下面以北京市义务教育课程改革实验教材数学第 17 册第 22 章第 4 节 “圆周角”的教学为例,谈一谈教学中的一些设计与感受。1教学背景分析本节课是在学生掌握了圆的有关概念、圆的对称性、圆心角等知识的基础上,重点研究圆周角的概念以及圆周角定理,圆周角不仅与圆心角之间关系十分密切,而且在进行角的有关计算、证明角相等、弧相等、弦相等、研究圆内接四边

31、形、判定相似三角形等常见几何问题中具有重要的作用,尤其是利用完全归纳法探索圆周角定理的过程,对培养学生分类讨论、转化等数学思想方法以及从特殊到一般的认知规律具有促进作用。因此,我确定了本节课的教学重点是:圆周角的概念和圆周角定理。我所任教的初三年级学生,从知识上看,已掌握了圆的有关概念、圆的对称性、圆心角等知识,从思维上看,能够比较主动的进行观察、实验、比较、猜想、证明等数学思维活动,这对于本节课的学习很有帮助,但由于圆周角定理的证明,需要分三种情况进行讨论逐一证明,这对于学生较为生疏,很难把相关知识完整地纳入已有的知识系统,在教学中我力图通过直观展示、动手试验、验证探索圆周角定理,使学生逐步

32、体会分类讨论、转化等数学思想方法以及特殊到一般的认知规律。因此,我确定了本节课的教学难点是:圆周角定理的证明及其应用。根据数学课程标准中关于“圆周角”的教学要求,和对教材、学生的分析,结合我班学生已有的经验和知识基础,我确定了本节课的教学目标: 了解圆周角与圆心角之间的关系,理解圆周角的概念,掌握圆周角定理,能熟练运用圆周角定理进行有关证明和计算; 经历观察、实验、比较、猜想、证明等探索圆周角定理的过程,体会转化、分类讨论的数学思想方法以及从特殊到一般的认识规律; 在合作交流活动中,享受自主探究发现知识的乐趣,在几何图形的运动变化中,感受变化美、动态美,培养学生勇于探索和勤于思考的精神。2教学

33、过程的设计创设情境,导入新课首先从学生已掌握的旧知识出发,提出问题:什么叫圆心角?图 1 中 AOB 的特点是什么?有哪些相关的性质?学生思考后回答,师生共同纠正评价,进一步明确:顶点在圆心的角叫圆心角;在同圆或等圆中,如果圆心角相等,那么它们所对的弧相等,所对的弦也相等。然后我用多媒体展示在北京海洋馆里人们通过圆弧形玻璃窗 AB 观看窗内神奇的海底世界的图片,如图 2,同学甲站在圆心 O 的位置,同学乙站在正对着玻璃窗的靠墙的位置C,同学丙和丁分别站在其他靠墙的位置 D 和 E。在学生理解题意后,向学生提问:你知道哪位同学的观赏角度最好吗?学生结合图形大胆猜想,猜想的结果是否正确,并不给出明

34、确的答案,而是设置一个悬念,并向学生说明:通过今天的学习,我们就可以解决这个问题,从而引入本节课的课题圆周角。合作探究,学习新知首先引导学生认识圆周角。提出问题 1:在图 2 中, AOB 的顶点在圆心, AOB 是圆心角; ACB、 ADB 和 AEB 这三个角有什么共同的特征吗?学生独立思考,回答问题后,师生共同纠正评价,明确共同的特征是:角的顶点在圆周上;角的两边都和圆相交。提出问题 2:你能尝试叙述一下“圆周角”的概念吗?学生通过类比回答问题,师生修改、补充、达成共识得到圆周角的概念:顶点在圆上,两边都和圆相交的角叫做圆周角。提出问题 3:圆周角与圆心角的概念有什么区别、联系吗?学生独

35、立思考进行回答,其他学生补充完善后,我利用多媒体课件指出圆周角与圆心角概念之间的区别、联系:图形 角的顶点 角的两边圆心角 AOB 在圆心 两边和圆相交(不必强调)圆周角 ACB 在圆上 两边和圆相交(必须强调)提出问题 4:判断下列各图形中的角是不是圆周角,并说明理由。学生独立思考后回答问题,图(3)(6)(8)中的角是圆周角。及时给予鼓励评价,并由学生总结强调:圆周角的概念中两个特征缺一不可:顶点在圆上;两边和圆相交。顺势引导学生观察图(3)(6)(8)中三个圆周角的位置特征,继续提问:问题 5:圆心与圆周角之间存在几种不同的位置关系?学生先独立思考,再与同桌交流,借助几何画板,从运动的观

36、点引导学生观察归纳,师生达成共识后明确指出:圆心与圆周角之间存在三种位置关系。圆心在角的一边上;圆心在角的内部;圆心在角的外部。为圆周角定理的分类证明做好铺垫,渗透分类讨论思想。然后我引导学生探究圆周角的性质观察实验,测量比较同学们分成小组,先在学案纸上任意画同一条弧 AB 所对的圆心角和圆周角,再用量角器分别度量出这两个角的大小,填入表格中,并比较它们在度数之间有怎样的关系?参与学生小组活动,对于发现规律的学习小组,给予及时的表扬,并鼓励他们用准确简练的语言,归纳概括提出猜想。对于没有发现规律的小组,引导学生根据圆心与圆周角不同的位置关系,正确画出图形,渗透分类讨论思想,并测量比较圆心角和圆

37、周角度数之间的关系,帮助他们发现规律。提出猜想,直观验证在学生分小组进行观察实验、度量比较、充分讨论的基础上,请小组代表阐述本组合作交流、探究发现的规律,提出猜想:一条弧所对的圆周角等于它所对的圆心角的一半。适时地利用几何画板进行直观演示,验证学生提出的猜想。拖动点 C,观察到弧 AB 所对的圆周角虽然有无数个,但度量 AOB 和 ACB 的度数后,发现:圆周角 ACB 都等于它所对的圆心角 AOB 的一半。拖动点 A,改变弧 AB 的大小,观察发现上述规律不变,即 ACB= AOB。推理证明,归纳性质在几何画板直观验证的基础上,让学生分小组进一步对猜想进行推理证明。积极参与学生小组活动,对于

38、能正确书写推理证明过程的学习小组,给予及时的鼓励表扬,并引导学生反思总结:在证明过程中,你运用了哪些数学思想方法?对于证明有困难的学习小组,分三步给予启发引导:第一步:让学生结合图形正确写出已知和求证;第二步:引导学生分三种情况进行讨论。从第一种“圆心在角的一边上”的特殊情况开始,利用“三角形内角和定理的推论和等腰三角形的性质”加以证明;第三步:引导学生把其他两种一般情况“圆心在角的内部或外部”,通过添加直径这条辅助线,转化为第一种“圆心在角的一边上”的特殊情况来解决。给予学生足够多的时间,让学生进行充分的讨论证明,然后请小组代表运用实物投影进行展示交流,和学生共同进行修改、补充和完善,并用多

39、媒体课件展示规范的推理证明过程,最后由学生总结概括得到圆周角定理,老师进行板书。圆周角定理:一条弧所对的圆周角等于它所对的圆心角的一半。已知:在中, 所对的圆周角是 ACB,圆心角是 AOB。求证:证明: 如图 1,圆心 O 在 ACB 的边上 OC =OB, B = C AOB 是 OBC 中 COB 的外角, AOB = C+ B AOB = 2 ACB 即 ACB = AOB 如图 2,圆心 O 在 ACB 的内部作直径 CD,利用(1)的结果,有 ACD = AOD , BCD = BOD ACD + BCD = ( AOD + BOD)即 ACB = AOB 如图 3,圆心 O 在

40、ACB 的外部作直径 CD,利用(1)的结果,有 ACD = AOD , BCD = BOD BCD - ACD = ( BOD - AOD)即 ACB = AOB 在得到圆周角定理后,请学生结合图形写出推理形式,并由一名同学板演。符号语言:在 o 中, 所对的圆周角是 ACB,圆心角是 AOB,(一条弧所对的圆周角等于它所对的圆心角的一半)。在学生对圆周角定理的文字、图形、符号三种语言已有正确认识的基础上,进一步强调:定理的条件:是“一条弧”。定理的结论:为角的有关计算、角相等、弧相等、弦相等的有关证明提供了新的方法和依据。定理的证明过程:使用完全归纳法进行证明,体现了分类讨论、转化等数学思

41、想方法以及从特殊到一般的认知规律。解决问题,反思感悟在正确理解圆周角定理后,继续问学生:你现在能解决引例中提出的问题吗?问题:在北京海洋馆里,人们可以通过其中的圆弧形玻璃窗 AB 观看窗内神奇的海底世界。 如图,同学甲站在圆心 O 的位置,同学乙站在正对着玻璃窗的靠墙的位置 C,同学丙和丁分别站在其他靠墙的位置 D 和 E。你知道哪位同学的观赏角度最好吗?解:因为 ACB、 ADB 和 AEB 是 所对的圆周角, AOB 是 所对的圆心角,所以 ACB ADB AEB AOB。因为的角度越大,观赏角度越佳,所以站在点 O 的位置时观赏角度最好,站在点 C、 D、 E 的位置时观赏效果一样。在解

42、决问题后,引导学生小结,反思感悟到:正确掌握圆周角定理是解决问题的关键。本阶段通过学生合作交流等活动,探究圆周角的概念和圆周角定理,逐步体会分类讨论、转化等数学思想方法以及特殊到一般的认知规律。应用知识,培养能力首先,安排了第一组练习:“比一比,谁最棒!”如图 1, 是 o 上的一点,如果 35,那么 AOB = ;如图 2, AB、 AC 为 o 的两条弦,延长 CA 到 D,使 AD = AB,如果 ADB = 30,那么 BOC = ;如图 3,已知 A、 C、 B、 D 是上的点,如果 AOB = 100,那么 ACB = , ADB = ;如图 4, A、 B 是上的两点,如果 AO

43、B=80,C 是 上不与点 A、 B 重合的任一点,那么 ACB = 。图 1 图 2 图 3 图 4第题是由圆周角直接求圆心角,第题是由圆心角直接求圆周角,目的是使学生熟悉掌握圆周角定理;第题需要先利用三角形内角和定理的推论和等腰三角形的性质确定圆周角后,再求出圆心角,目的是使学生进一步掌握圆周角定理;第题点 C 在劣弧上还是在优弧上不确定,需要分类讨论求解,目的是使学生灵活掌握圆周角定理;以上题目,采用课堂竞赛的形式组织学生完成,由学生独立思考后进行口答,其他学生补充、修改,我及时给予鼓励评价,本阶段通过“比一比,谁最棒”这个练习,激发学生学习积极性,使学生从不同的角度,逐步理解掌握圆周角

44、定理,体会圆周角定理在计算中的重要应用。接着,安排了第二组练习:“试一试,你能行!”已知:如图, A、 B、 D、 E 为 o 上的四个点,点 E 为 DC 延长线上的一点。求证: BCD+ A=180; ABC+ ADC=180; BCE= A。此题先由学生独立思考,写出证明过程后,再分小组讨论交流,我有针对性地进行巡视。对于言之有理、落笔有据,书写规范的学生给予及时的鼓励表扬,并引导他们用简练的语言,归纳概括圆内接四边形的重要结论。对于暂时没有发现解题思路的学生,我引导学生通过做半径,构造圆心角,使圆周角与同弧所对的圆心角联系起来,从而解决问题。在学生小组讨论交流后,我利用投影有针对性地展

45、示收集到的不同学生的证明过程,并给予评价指导。然后我进一步向学生提问:你知道圆内接四边形有哪些性质吗?在学生充分发言的基础上,师生共同修改完善、归纳总结、达成共识后得到:圆内接四边形的对角互补, 一个外角等于它的内对角。通过这个问题的解决,让学生进一步体会圆周角定理在证明中的重要应用。最后,我安排了第三组练习:“做一做,夺金牌”在 2008 年北京奥运会上,中国选手奋力拼搏,获得 100 枚奖牌,我校数学兴趣小组也要参加北京市的“OM”头脑奥林匹克比赛,比赛用的道具都是老师和同学自己动手制作的。一天,小明找到老师,他想在一块圆形纸板上画八个 45 的角,组成一个美丽的图案(如图),希望可以提供

46、一种比较简单的做法,你能帮助小明想个好办法吗?通过这个问题的解决,让学生进一步感受到圆周角定理在实际生活中的广泛应用,从而激发学生的学习积极性。并进一步体会分类讨论思想。归纳总结,提升认识为了使学生对本节课有一个整体的感知,教师和学生共同回顾了本节课的学习内容和重点。结合学生发言,引导学生进一步从知识与技能、过程与方法等方面进行反思归纳总结。顶点在圆上,两边都和圆相交的角叫做圆周角;一条弧所对的圆周角等于它所对的圆心角的一半。“观察、实验、比较、分析、归纳、猜想、证明”是探究问题常用的策略;“从特殊到一般”是认识事物常用的数学方法;“分类讨论、转化”是解决问题常用的数学思想。本节课重点研究圆周

47、角的概念以及圆周角定理。主要采取引导发现、合作探究的教学方法。首先,让学生在实际生活中通过直观感受,抽象概括圆周角的特征,以准确的语言明确揭示圆周角的本质,并对圆周角的概念进行比较、辨析,深化理解圆周角的概念,从而逐步体会圆周角与圆心的三种位置关系,渗透分类讨论思想;然后引导学生经历观察、实验、分析、比较、归纳、猜想、证明探索圆周角定理的过程,并借助几何画板的直观演示,增强学生对圆周角定理的感性认识,体会几何图形运动变化中的不变性;通过分情况证明圆周角定理的过程,体会转化、分类讨论、完全归纳法的数学思想方法以及从特殊到一般的认知规律;通过选取由易到难不同层次的练习,从不同的角度,使学生熟练掌握

48、圆周角定理,感受圆周角定理在计算、证明以及实际生活中的广泛应用;通过学生小结,回顾知识,培养学生的归纳概括能力以及善于反思的能力,从而进一步体会数学思想方法是解题的灵魂。在初中数学教学中,通过分类讨论思想的渗透,既能使问题得到解决,又能使学生学会多角度、多方面去分析、解决问题,从而培养学生思维的严密性、全面性。掌握分类思想,有助于学生理解知识,整理知识、消化知识和独立获取知识,使学生学会一种分析问题和处理问题的思想方法,从而提高学生全面观察事物、灵活处理问题的能力。渗透方程思想,培养学生数学建模能力方程思想是初等代数思想方法的主体,应用十分广泛,可谓数学大厦基石之一,在众多的数学思想中显得十分重要。所谓方程思想,主要是指通过已知和未知的联系,建立起方程或方程组,通过解方程或方程组,求出未知量的值,从而使问题得以解决的思想方法。运用方程思想求解的题目在中考试题中随处可见,方程思想是指借助解方程来求出未知量的一种解题策略,同时,方程思想也是我们求解有关图形中的线段、角的大小的重要方法。如已知线段 AC: AB: BC=3:5:7,且 AC+AB=16cm,求线段 BC 的长。对于这个题,我们可以设 AC=3x,则 AB=5x, BC=7x,因为 AC+AB=16cm,所以 3x+5x=

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报