收藏 分享(赏)

2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt

上传人:无敌 文档编号:304626 上传时间:2018-03-27 格式:PPT 页数:22 大小:2.86MB
下载 相关 举报
2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt_第1页
第1页 / 共22页
2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt_第2页
第2页 / 共22页
2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt_第3页
第3页 / 共22页
2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt_第4页
第4页 / 共22页
2013版高中全程学习方略人教版必修一多媒体课件:-1.1.1--集合的含义与表示-第2课时--集合的表示.ppt_第5页
第5页 / 共22页
点击查看更多>>
资源描述

1、,第2课时 集合的表示,会用列举法和描述法表示集合;(重点、难点)2.掌握自然语言、数学语言的相互转化.,1.集合的含义.,2.集合中元素的特性:确定性,互异性,无序性.,3.元素与集合间的关系.4.数集及其符号表示.,判断下列元素的全体能否组成集合?(1)地球上的四大洋;(2)方程(x-1)(x+2)=0的所有实数根;(3)小于10的正偶数;(4)不等式2x-73的所有的解.,数学上除了用自然语言可以表示集合外,还可以用什么方法表示集合?,能,集合的表示方法,把集合的元素一一列举出来,并用花括号“ ” 括起来表示集合的方法叫做列举法.,1.列举法:,元素,无序,互异,注意:,元素间要用逗号隔

2、开.,例1 用列举法表示下列集合:,(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有素数组成的集合. 解:(1)设小于10的所有自然数组成的集合为A, 那么A=0,1,2,3,4,5,6,7,8,9; (2)设方程x2=x的所有实数根组成的集合为B, 那么B=1,0; (3)设由120以内的所有素数组成的集合为C, 那么C=2,3,5,7,11,13,17,19.,提升总结 :由于元素完全相同的两个集合相等,而与列举的顺序无关,因此集合可以有不同的列举方法.例如 A=9,8,7,6,5,4,3,2,1,0,变式训练:用列举法表示下列集合1

3、.由方程x2-9=0的所有实数根组成的集合2.由小于8的所有素数组成的集合3.一次函数y=x+3与y=-2x+6的图象的交点组成的集合4.不等式x3 7的解集,列举法适用范围: 集合中的元素个数是有限的,,有限集,为无限集,无法用列举法表示.,2.描述法:用集合所含元素的共同特征表示集合的方法.,元素的一般符号及取值范围,元素所具有的共同特征,例2 试分别用列举法和描述法表示下列集合.,(1)方程x2-2=0的所有实数根组成的集合;(2)由大于10小于20的所有整数组成的集合.,方程x2-2=0的两个实数根为 ,因此,用列举法表示为A= .,解:(1)设方程x2-2=0的实数根为x,并且满足条

4、件x2-2=0,因此,用描述法表示为A=xR|x2-2=0.,大于10小于20的整数有11,12,13,14,15,16,17,18,19,因此,用列举法表示为,B=xZ10x20.,B=11,12,13,14,15,16,17,18,19.,(2)设大于10小于20的整数为x,它满足条件xZ,且10x20,因此,用描述法表示为,用描述法表示下列给定的集合.(1)不等式4x53的解集(2)二次函数y=x2-4的函数值组成的集合(3)反比例函数 的自变量的值组成的集合(4)不等式3x4-2x的解集, xR|x0,yR|y-4, xR | , xR|x2,变式训练:,下面我们来解答情景导入提出的问

5、题(1)地球上的四大洋组成的集合表示为 太平洋,大西洋,印度洋,北冰洋;(2)方程(x-1)(x+2)=0的所有实数根组成的集合表示为,1,-2;,把集合的元素一一列举出来,(3)小于10的正偶数组成的集合表示为 2,4,6,8.(4)不等式2x-73的所有的解组成的集合表示为,用元素的共同特征表示,1.判断下列集合的写法是否正确,如正确,请说出该集合中元素的个数.(1) 1, 2, 3, 4 (2)0, 1, 3(3)(4)(5),正确,正确,错误,正确,无限,正确,2.用适当的方法表示下列给定的集合.(1)比4大2的数;(2)所有奇数组成的集合;(3)大于1且小于6的整数;,3.(2012

6、临沂高一检测)已知集合A=1,0,a,若a2A ,求实数a的值,(2)若a2=0,则a=0,此时集合A中有两个相同元素0,舍去(3)若a2=a,则a=0或1,不符合集合元素的互异性,舍去综上可知:a=-1.,解:(1)若a2=1,则a=1,当a=1时,集合A中有两个相同元素1,舍去.当a=-1时,集合A中有三个元素1,0,1,符合题意,拓展提高(1),容易理解,直观明了,元素有共同的特征,所有,元素不太多的集合,元素无限或很多的集合,拓展提高(2),1. a与a 的含义是否相同?,2. 集合y|y=x2,xR与集合x|y=x2, xR 相同吗?,不同,前者为元素,后者为集合.,不同,前者是函数的所有函数值组成的集合;后者是函数的所有自变量组成的集合.,回顾本节课你有什么收获?,本节我们进一步学习了集合的表示方法列举法和描述法,在解决实际问题时我们应学会选择合适的方法来恰当的表示集合;在利用描述法表示集合时要特别注意竖线前面的代表元素的选择,在分析集合问题时也要注意实际问题中代表元素的特殊形式,从而提高我们解决实际问题的能力.,一切澎湃于心,让我们真正能够在心里有所酝酿的东西,都值得我们去努力。,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 高中教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报