1、 小学数学利用画图策略解决问题的实践研究结题报告 仙居县第一小学课题组 【内容摘要】本文是小学数学利用画图策略解决问题的实践研究结题报告。 主要讲述了从借助图形,把纯文字的解决问题变得直观明了,在纷繁的数量之间,去除非本质属性,抓住数量之间的本质联系。指导学生如何借助于图形的性质将许多抽象的数学概念和数量关系形象化、简单化,恰当地借助直观图形,让数量基于图形“显山露水” 。从而达到解决问题,锻炼能力的目的。 【关键词】图形 解决问题 策略 一、课题的研究背景 (一 )数学的特点 数学是抽象性、逻辑性和应用性极强的学科。在小学阶段,小学生认识水平有限,尤其是低年级的学生,他们对一些抽象的文字,符
2、号的理解可能会发生一些困难,如果适时的让他们自己在纸上涂一涂、画一画,可以拓展学生解决问题的思路,帮助他们找到解决问题的关键,画图比较直观,通过画图能够把一些抽象的数学问题具体化,把一些复杂的问题简单化。常用的画图的方法有:直观图、示意图、线段图、树图、集合图等。这些方法中,线段图能把抽象的数学问题简单化。例如在低年级对于比多比少的应用题的教学,学生往往不正正确判断,而利用线段图,就可以一目了然。而在一个单元的复习时,可以把这一单元的知识用树图或集合图来表示。而在低年级教学中直观示意图是必不可少的,学生可以利用直观示意图来理解一些复杂的问题,总之画图在小学数学教学中是必不可少的教学策略。 (二
3、 )师生教学的需求 新课程中 “解决问题”列为数学教学中的四大目标之一,对义务教育阶段的学生须达到的“解决问题”目标,作了具体规定:“初步学会从数学的角度提出问题、理解问题,并能综合运用所学的知识和技能解决问题,发展应用意识;形成解决问题的一些基本策略,体验解决问题策略的多样性,发展实践能力与创新精神;学会与人合作,并能与他人交流思维的过程和结果;初步形成评价与反思的意识。 ” 解决问题不单独成章,而是把它融合于“数与代数” 、 “空间与图形、 ” “统计与概率”等领域之中,并把它作为各领域解决其相应的实际问题的有机部分呈现。特别是低年级 本课题系 2012 年度仙居县教育科研规划课题 负责人
4、:王健成员: 张燕燕 吴丹红 吕春女 执笔人:王健应用题真可谓改头换面。它不仅改了名头,谓之“解决问题” ;而且表现形式也有了全新的变化,它图文并茂,生动活泼,既符合学生的心理特点,又能更好地培养学生的逻辑思维能力和创造性解决问题的能力,可以说好处多多。 但在教学中,我们发现很多老师不适应新教材“应用题”教学的编排特点,教学中往往削弱应用题教学,着重于计算教学;或者把教材中的应用题简单化,当成了练习题;或者和传统的应用题教学完全隔离开来,不敢越雷池半步。课改以来,我们的应用题教学出现了不少的偏差。有的说:到了中高年级纯文字的应用题,很多学生看不懂;有的说:中下学生解决应用题简直是在猜谜语;大家
5、都说:现在学生的解题能力下降了很多;现在不讲线段图,也不讲数量关系,到五六年级时怎么解决稍复杂的分数和百分数应用题。而学生在学的过程中,由于没有系统的学习解决问题的方法,导致解决问题能力的下降。面对这些问题,不得不引起我们的反思。 在低年级的实际教学中,解决问题教学已经占有很大的比重,但是学生在低年级时的解决问题能力不错,随着年级的增高,解决问题的能力越来越弱,这是什么原因造成的呢?我们认为,这跟教材的编排特点和学生的认知水平发展都有关系,在低年级的教材中,解决问题的呈现形式是直观而有趣的图表,小学生一看,通俗易懂、非常喜欢,乐于解决。到了中高年级纯文字的应用题,很多学生看不懂,一碰到解决问题
6、就烦,加上一部分学生认知水平的落后,解决问题对于他们来说会越来越困难。导致对这一类问题失去了兴趣。因此,我们有必要抓住要点进行突破,以解决问题的策略研究为抓手,对数学教学中的问题进行反思、总结,在研究中使得师生共同提高。 二、文献综述 在国内,大量的学者及一线教育工作者也对解决问题进行了深入的调查与研究,有关数学解决问题策略的研究多集中在数学应用题上,他们通过自身或观察他人的教育教学实践并结合心理学理论提出了“解决问题”相关概念的定义、策略的分类及解决问题的一般步骤。我国的张奠宙、刘鸿坤教授在他们的数学教育学里的“数学教育中的问题解决”中指出:问题是一种情境状态, 问题解决中的“问题” ;并不
7、包括常规数学问题,而是指非常规数学问题和数学的应用问题;问题是相对的。我国学者沃建中(2001)研究了小学生数学问题解决策略的发展情况。该研究认为在数学问题解决策略的结构上,数学优秀生和学困生解应用题都经历了大致相同的认知步骤:阅读、分析、假设、计算和检查等。分析阶段用时多少与解题成绩密切相关,分析是解应用题的重要环节。小学生解决数学问题策略的发展体现出如下特征,即从猜测策略到试误策略再到抓数学本质策略。我国学者李明振(1998)等人认为解决数学问题的基本策略为:整体策略、模式识别策略、转化策略、媒介过渡策略、辨证思维策略、记忆策略。邹明结合自己的教学实践,于2007 年在“ 解决问题的策略”
8、单元教学思考一文中强调:走进情境,获取信息。处理信息, 形成策略。应用拓展,加深理解。及时反思,提升策略。学以致用,感受价值。刘勤于 2008年在策略不是教出来的一文中提出: 学生的经验是形成解决问题策略的基础;适时的放与收在解决问题的过程中逐步形成策略;回顾与反思提升学生策略的筛选与优化意识。 我们的传统经验和新课程改革到底提供了哪些解决问题的策略呢?为此我查阅了各种版本的教学材料,主要有北师大版、人教版、苏教版、浙教版等教材和教学参考书,还进行教师访谈。发现教材主要提供了以下策略:运算意义策略;数量关系策略;画图策略;猜测并验证策略(假设) ;列表或列举策略;替换、转化策略;用方程解的策略
9、;关联(分类)策略。当然,以上的策略在解决问题时,也不是单独使用,往往是同时利用几种策略共同解决问题;而且除以上里列举的各种策略外,传统的经验还提供了一些特殊的策略。如逆推、对应、检验等等。 解决问题的策略,国内外对解决问题的策略进行概念界定的并不多见。但可以肯定的是,要教会学生学会学习,需要让学生掌握并自觉运用学习策略;同样,要让学生学会解决问题,就需要学生掌握并自觉运用解决问题的策略。传统的应用题解题策略的教学,是就一类问题提出某种有效的解题方法。而解决问题的策略则可看做是一种思想,这种思想无法通过解答具体的某一道应用题得以掌握。同时,具体某一策略的形成,能提高其解决相关实际练习的能力。
10、综合现在的研究现状,发现研究主要集中在从理论的高度对解决问题的相关概念、策略及步骤进行一系列的研究;国内一些教育工作者也从自身实践的角度对怎样提高学生解决问题的能力进行了研究。而我们希望立足教材,重点从“图表式”解决问题的策略”的教与学进行研究,从而促进解决问题的策略的有效教学的形成。 三、研究目标 1通过研究,使教师了画图解决问题的价值,掌握教学图表式解决问题的方法,全面提高解决实际问题的教学质量。2通过研究,使学生能找到用画图解决问题的方法,提高解决问题的能力,能辨别哪些问题适合用图表式来解决。四、研究的内容 本课题研究是借助图形,把纯文字的解决问题变得直观明了,在纷繁的数量之间,去除非本
11、质属性,抓住数量之间的本质联系。指导学生如何借助于图形的性质将许多抽象的数学概念和数量关系形象化、简单化,恰当地借助直观图形,让数量基于图形“显山露水” 。当然,在解决问题的过程中,借助图形是过程状态,并不是最终结果。解决问题借助形,但不是依赖形。要让“形”(图形)变为“象”(表象 ),让眼前的形变为脑中的形,从而从内在达到提高学生解决问题的能力。(一 ) 什么样的情景需要画图 对很多孩子来说,解决问题是小学数学学习的一个难点。尤其是到了高年级,随着各种已知条件越来越复杂,更是让部分学生“无从下手” ,很多同学到了谈“题”色变的地步。所以,怎样让孩子从对解决问题的“厌学”到“乐学” ,从对问题
12、的“恨”转变到“爱” ,让所有孩子感受到解决问题原来并不可怕,还很可爱,让他们体会到问题所散发出来的魅力。我的做法是“借助图形,感受魅力” 。爱“美”是人的天性,新教材中有很多数学问题是以现实生活情境的形式呈现的,很多练习中的解决问题也是用情景图呈现的,这里一幅幅漂亮精美的情景图,实物图,都给孩子视觉上带来“美”的享受,吸引孩子的眼球,这为我开展本课题提供了有力的帮助,用这些精美的情景图去换取孩子对解决问题的喜爱,这是我实施本课题走的第一步。精美的情景图,实物图虽能给孩子视觉上带来享受,但情景图中解决问题所需要的已知条件和问题都没有十分清晰地告诉学生,因此在分析问题,解决问题前,学生需要经历一
13、个收集信息,提出问题的过程。面对丰富多彩的情景,多元化的信息,我们的孩子往往眉毛胡子一把抓,一抓就抓很多,面对学生找的信息,如果教师不加理睬,往往会伤孩子的心,也打击了孩子的积极性,所以对孩子找到的数学信息都得给予肯定,并且把一些教师认为有用的板书在黑板上,让学生觉得自己找到的信息得到肯定,有了用武之地,感受到成功的1题意不清借助简图帮助读懂题意。 纯文字的问题语言表述上比较严简,看上去枯燥乏味,缺乏魅力,再加上直观的图形看多了,学生的抽象思维能力相对被削弱了,使很多孩子读不懂题意,缺乏解题的自信,更有孩子不愿读题,懒的读题。这时就需要借助于图形,让图形来架起学生形象思维和抽象思维之间的桥梁。
14、用画图法,提高理解、分析问题的能力的第一步就是借助线段图或实物图把抽象的数学问题具体化,还原问题的本来面目,使孩子读懂题意理解题意。在教学相遇问题时用线段图就能很好的让孩子理解“相向而行” “相遇”这些词语,并通过让孩子猜猜他们会在哪里相遇,让他们自己到图上标出相遇点,即能培养孩子的估计能,又激活了孩子解题的兴趣,使孩子乐于参与到解题中来。还有学生在学了长方形周长之后常会碰到这样一道题目“一块长 8 米,宽 5 米的长方形菜地,一条长边靠院墙,其余三边围上竹篱笆,篱笆长多少米?”初次碰到这道题目的学生由于缺乏生活经验常常对“靠院墙” “ 三边围上竹篱笆”不理解,以至于无法解题。这时我经常会在黑
15、板上画一个实物图(草图见下图) 帮助孩子理解题意。读懂题意,理解题意是解决问题的第一步,只有读懂题意,学生才有信心解题。所以借助线段图帮助孩子理解题意是本课题至关重要的一步,它是孩子打开解决问题大门的一把“金钥匙” 。2数量关系不明借助画图,提高问题的分析能力。 小学生年龄小,理解能力分析能力都有限,线段图不仅能帮助孩子读懂题意,理解题意,还能使题目中的数量关系更明朗,更形象、直观,可见线段图还有帮助孩子提高分析问题的能力。像小学低年级的很多解决问题可以用画实物图来解决:有 10 个小朋友排队做操,从左边数起小红排第 5 个,从右边数起小红排第几?对于这样的问题可以画出实物图帮助理解解决问题。
16、 ( )还有像“比()多() ”、 “比()少() ”的低段解决问题的难点,难在学生一看“比()多() ”不加分析 就判断用加法计算,反之则用减法计算。但通过画线段图,就能避免学生出现这种错误判断。在教学中我也常常通过画线段图帮孩子理清思路,分析数量关系。比如在教学“比一个数的几倍多几或少几,求这个数”时我出示:少年宫合唱队有 84 人,比舞蹈队的 3 倍多 15 人。舞蹈队有多少人?凭直觉大部分学生会列出:843 15,有一小部分的学生列出 84315 那也是对倍数关系掌握的较好的一类学生,只有极个别外面学奥数的学生会列出(8415 )3 的算式。于是我在黑板上画线段图:舞蹈队 合唱队 帮助
17、孩子把倍数关系转化成份数关系:把舞蹈队看作一份,合唱队有这样的 3 份多 15 人,在线段图的帮助下,学生一下子领悟到先要去掉多出的 15 人,求出舞蹈队的 3 份,再求一份。(二 )怎样学会画线段图,提高解决问题的能力。 1.教孩子看线段图培养识图能力 新课程中有大量的情景图和实物图,特别是低年级的教材中更是充分考虑到孩子的年龄特点以图为主。以北师大版教材与老教材相比,从时间上看线段图出现比老教材晚,到了四上教学路程问题时才在练习中出现实物图与线段相结合的图形,四下方程问题的教学中才正式出现常规线段图。从数量上讲新教材比老教材出现线段图的频率少的多。所以虽说我的课题面对五年级学生,但学生接触
18、线段图的机会还是很少,许多学生存在不会看线段图问题。我从以下几方面来提高孩子识图能力:在教学中有意识用线段图教学,提高线段图在孩子面前出现的频率,让线段图深入孩子的脑海。当线段图在孩子面前出现的频率到了一定程度,让孩子说说你看到了哪些信息,是怎样看出来的?问题是什么?怎样读懂的?慢慢的学生知道了:在相差关系中短线表示小数,长线表示大数,两线比较多出部分是相差数。还知道实线表示存在,虚线表示不存在等等。看图编题,看图列式。“ 看图编题,看图列式”是对孩子读图能力的进一步提升,是对孩子识图能力的一个考验。看图编题让孩子把看到的线段图通过语言完整的表术出来,编成一道道应用题。看图列式是让孩子根据线段
19、图提供的信息列式解决其提出的问题。2.用画线段图解决问题。 “受之于鱼,不如受之于渔。 ”教孩子解题还不如教孩子解题的方法,用画线段图解决问题是老教材解决应用题的有效方法,既然有效,我认为在我们的新课程中还应继续使用。让我们的孩子学会用线段图解题是本课题的最终目的。那么怎样达到这个目的呢?我们是分以下三步走的:自由画图阶段,初步尝试画图法解决问题。“自由画图阶段”我也称它为“画丫阶段” ,是我们的孩子朦朦胧胧想把问题借助线段图画出来,却又不知如何画怎样画的时候。它是孩子识图能力达到一定水平,教师用线段图辅助教学解决问题达到一定程度,学生潜移默化,自然而然在解决问题运用出来的时候,是用画图法解决
20、问题的初级阶段。这时老师应处在一种观望阶段,让我们的孩子自由发挥,他们的图有些是实物的,如他们在解决植树问题时就在本子上画一棵棵小树来帮助自己分析;也有些是线段实物相结合的,如在教学鸡兔同笼时会用圆表示兔和鸡,用线段表示鸡兔的,脚来解决问题等等。这时的图是原生态的是非常可爱的,就像一个蹒跚走路的孩子,而老师应该保护他们,鼓励他们,分享他们在尝试中体会到用图解题的快乐,和他们一起体念用画图法解题带来的成功感。 规范画图阶段,初步具有画图法解题能力。自由画图阶段的时间不宜过长,当发现你的学生碰到解决问题画图欲望比较强的时候,找到一个可以作画的载体进入第二阶段规范画图。我的课题操作到这一阶段时,正好
21、是教学我 如:教学分数混合运算(二)(就是整体“1 ”已知,求比整体“1”多(少)几分之几是多少?这一课时我是这样教学的。脑中成图阶段,用画图法提高问题的解题能力。脑中成图阶段,是用画图法解决问题的最高阶段,看到条件,就能马上联系到图形,整个问题看完,就已经形成了文字条件与图形的转化,然后根据脑中的图来解决问题,从而从真正意义上提高了学生的解题能力。这时学生在规范作图的长期训练后,才有可能达到的效果。这是我们课题组努力的方向和目标。五、研究成效。 1、学生方面(1)有利于学生学习兴趣的提高本课题采用对比研究法,在对五年级五个班进行问卷测试附调查问卷 1 份,现对实验班 503、504 和平行班
22、 501、505 之间的比较。实验班 503参测人数 48实验班 504参测人数 47非实验班501参测人数 47非实验班505参测人数 50喜欢 36 人喜欢 39 人喜欢 25人喜欢 20 人不喜欢7 人不喜欢3 人不喜欢4 人不喜 22 人中立 5人中立 5人中立 19人中立 8人第一题“你喜欢数学中的解决问题吗”喜欢的人数 喜欢的人数 喜欢的人数 喜欢的人数占总参测人数的 75%占总参测人数的 83%占总参测人数的 53%占总参测人数的 40%评析通过对比发现实验班在对解决问题喜爱程度上大大高于非实验班。(2)有利于学生的主动发展,促进思维的发展。课堂教学的目的,绝不是要消除差异性,而
23、是为了给每个同学提供适合他们发展的条件,促使他们更好地发展。 “问题解决”给学生提供了依据各自的数学现实,调动各自原有的知识和经验,运用有个性的思维方式创造性地解决问题。虽然学生问题解决的方法有时不同,思维水平的高低不同,但只要教师能创设好平台,做到人人参与,亲身经历探索发现问题解决的过程,就能真正实现“不同的人在数学上得到不同的发展。从下面的统计中可以看出来。实验班503参测人数 48实验班504参测人数 47非实验班 501参测人数 47非实验班 505参测人数 50A 19人A 27人A 39 人A 39 人B 21人B 16人B 8人B 5 人第 2 题“碰到你自己不会解决的解决问题,
24、你会怎么做?”C 0 C 0人C 0人C 0 人D 8人D 4人D 4人D 3人A、求教他人 B、画图 C、放弃 D、其它 选择画图的人数占总参测人数的44%选择画图的人数占总参测人数的34%选择画图的人数占总参测人数的17%选择画图的人数占总参测人数的10%第 2 题“碰到你自己不会解决的解决问题通过第二题的比较分析发现在碰到自己不会解的解决问题选用画图法的实验班明显高于非实验班。实验班的学生碰到解决问题有意识用画图来解决的人明显要多,从这到题目显示实验班比非实验班的学生解体题能力要强。2、教师方面(1)通过课题研究使教师成了称职的引导者传统的小学数学教学是“应试教育式” ,教师是课堂的主宰
25、。即根据不同的问题,教师一开始就像一只“领头雁” ,教师“讲” ,学生“听”以这样单一地方式来传递问题的答案。通过课题的实施我们积极地倡导自主、合作、探究的学习方式,使我们教师成为学生学习过程中真正的引导者。在课堂上,学生能自己解决的问题,教师决不插手,遇到难处,教师只是合理,适当地加以点拨、引导,决不以教代学;学生针对某一问题发表自己独特观点时,我们热情倾听,适时点拨、评析,时时刻刻注意尊重自己的合作者,即使是与自己的观点相悖,也不一棍子打死。即使学生的观点实在不可取,教师也是委婉地否定,时刻注意保护学生学习的积极性。这样,学生与教师之间在互帮互助的课堂教学中建立了融洽的朋友关系,教师不再是
26、最后结果的定夺者。(2)通过课题研究提高了教师教学设计能力“教学相长”学生由于问题解决的能力加强,各方面都得到了发展,而且学生自己享受体验的课堂教学往往要比那些单向灌输的课堂更难以驾驭,教师就要不断地学习,使自己的教学适应现在的课堂,这样教师在课前备课时就应该做到从学生学习需要出发,以促进学生“怎样有效地学”为主要思考坐标,重点解决学生“学什么” “怎么学” “学到什么程度” “采用什么方式学”等问题为主要内容进行教学设计。让学生在课堂上带着一定的情感、态度、价值观去主动地学习、主动地发展。长此以往教师教学设计的能力就不断地在提高,教学过程也不断地得到优化。六、研究结论与反思 通过画图来解决学
27、生在学习中碰到的问题,使学生对数学的学习产生了浓厚的兴趣,找到了学习数学的好方法-画图,也达到了很好的学习效果,拓展了学生的思维空间。但是画图也有一定的局限性,不是对所有的内容都合适,有时,也需要跟其他的解决问题策略相结合才能达到最佳的效果。主要参考文献1.(德)亚瑟 恩格尔:解决问题的策略 ,M上海教育出版社,2005 年。 2马云鹏:重视培养学生解决问题能力,M湖南教育,2004年。 3马云鹏:小学数学课程实施与学生解决问题能力的培养,小学数学教育,2005 年。 4林崇德主编,蒯超英: 学习策略 ,M湖北人民出版社,1999 年。 5辛自强:问题解决与知识建构 ,M教育科学出版社,2005 年。 6 数学课程标准(实验稿) ,M北京师范大学出版社, 2002年。 7 数学课程标准解读 ,M北京师范大学出版社, 2002 年。 8钱科英,优化解决问题策略的教学,J 小学数学教学网,2009 年。 9孙来根,有效教学解决问题的策略,J 小学数学教学网,2009 年