1、13.1.2 线段的垂直平分线的性质,点此播放教学视频,如果一个平面图形沿一条直线 ,直线两旁的部分能够 ,这个图形就叫做轴对称图形.,折痕所在的这条直线叫做_.,对称轴,折叠,互相重合,把一个图形沿着某一条直线 ,如果它能够 ,那么就说这两个图形关于这条直 线(成轴)对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做 .,A,A,B,C,B,C,折叠,与另一个图形重合,对称点,一、创设情境,温故知新,1.前面我们学习了轴对称图形,线段是轴对称图形吗?什么是线段的垂直平分线?2.你能找出线段的对称轴吗?3. 线段的对称轴与这条线段有什么关系?说明理由,你能用不同的方法验证这一结论吗?,探索
2、并证明线段垂直平分线的性质,如图,直线l 垂直平分线段AB,P1,P2,P3,是 l 上的点,请猜想点P1,P2,P3, 到点A 与点B 的距 离之间的数量关系,相等,探索并证明线段垂直平分线的性质,请在图中的直线l 上任取一点,那么这一点与线段 AB 两个端点的距离相等吗?,线段垂直平分线上的点与这条 线段两个端点的距离相等,已知:如图,直线lAB,垂足为C,AC =CB,点 P 在l 上求证:PA =PB,探索并证明线段垂直平分线的性质,证明:“线段垂直平分线上的点到线段两端点的距 离相等”,探索并证明线段垂直平分线的性质,用几何语言表示为: CA =CB,lAB, PA =PB,证明:
3、lAB, PCA =PCB 又 AC =CB,PC =PC, PCA PCB(SAS) PA =PB,线段垂直平分线的性质: 线段垂直平分线上的点与这条线段两个端点的距离相等,已知:如图,直线lAB,垂足为C,AC =CB,点P 在l 上求证:PA =PB,8,课堂练习,练习1 如图,在ABC 中,BC =8,AB 的中垂线 交BC于D,AC 的中垂线交BC 与E,则ADE 的周长等 于_,解: ADBC,BD =DC AD 是BC 的垂直平分线 AB =AC 点C 在AE 的垂直平分线上 AC =CE AB =AC =CE,课堂练习P62,2 如图,ADBC,BD =DC,点C 在AE 的垂
4、直平分线上,AB,AC,CE 的长度有什么关系?AB+BD与DE 有什么关系?, AB =CE,BD =DC, AB +BD =CD +CE即 AB +BD =DE ,探索并证明线段垂直平分线的判定,反过来,如果PA =PB,那么点P 是否在线段AB 的 垂直平分线上呢?,点P 在线段AB 的垂直平分线上,已知:如图,PA =PB求证:点P 在线段AB 的垂直平 分线上,探索并证明线段垂直平分线的判定,证明:如图作PCAB 则PCA =PCB =90 在RtPCA 和RtPCB 中, PA =PB,PC =PC, RtPCA RtPCB(HL) AC =BC 又 PCAB, 点P 在线段AB
5、的垂直平分线上,已知:如图,PA =PB求证:点P 在线段AB 的垂直平分线上,探索并证明线段垂直平分线的判定,用几何符号表示为: PA =PB, 点P 在AB 的垂直平分线上,线段垂直平分线的判定与一条线段两个端点距离相等的点,在这条线段的垂直平分线上,这些点能组成什么几何图形?,探索并证明线段垂直平分线的判定,你能再找一些到线段AB 两端点的距离相等的点吗? 能找到多少个到线段AB 两端点距离相等的点?,在线段AB 的垂直平分线l 上的 点与A,B 的距离都相等;反过来, 与A,B 的距离相等的点都在直线l 上,所以直线l 可以看成与两点A、 B 的距离相等的所有点的集合,画线段AB的垂直
6、平分线l,在l上任意取点P,量一量点P到A与B的距离,你有什么发现?再取几个点试试.你能说明理由吗?,结论:线段垂直平分线上的点与这条线段两个端点的距离相等,反过来,若AP=BP,则P在线段AB的垂直平 分线上.,结论:与一条线段两个端点距离相等的点,在这 条线段的垂直平分线上.,线段的垂直平分线可以看成是与线段两端点的距离相等的所有点的集合.,解: AB =AC, 点A 在BC 的垂直平分线 MB =MC, 点M 在BC 的垂直平分线上 直线AM 是线段BC 的垂直 平分线,课堂练习P62 2,练习3 如图,AB =AC,MB =MC直线AM 是线段BC 的垂直平分线吗?,课堂练习,练习4
7、如图,过点P 画AOB 两边的垂线,并和 同桌交流你的作图过程,2.如图,NM是线段AB的垂直平分线,下列说 法正确的有: . ABMN,AD=DB, MNAB, MD=DN,AB是MN的垂直平分线.,1.下列说法:若直线PE是线段AB的垂直平分线,则 EA=EB,PA=PB;若PA=PB,EA=EB,则直线PE垂直平分 线段AB;若PA=PB,则点P必是线段AB的垂直平分线上 的点;若EA=EB,则过点E的直线垂直平分线段AB其 中正确的个数有( ) A1个 B2个 C3个 D4个,C,练一练,问题思考:既然轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线,那么轴对称图形的对称轴如何来
8、作呢?,如何作出线段的垂直平分线?,由两点确定一条直线和线段垂直平分线的性质可知,只要作出到线段两端点距离相等的两点并连接即可,点此播放教学视频,作线段的垂直平分线.,已知:线段AB. 求作:线段AB的垂直平分线.,C,D,作法:,(2)作直线CD. CD即为所求.,结论:对于轴对称图形,只要找到任意一组对应点,作出对应点所连线段的垂直平分线,就得到此图形的对称轴.,(1)分别以点A,B为圆心,以大于 AB的长为半径作弧,两弧交于C,D两点.,1.下图中的五角星有几条对称轴?作出这些对称轴,A,B,作法:(1)找出五角星的一对 对应点A和B,连接AB (2)作出线段AB的垂直平分线n 则n就是
9、这个五角星的一条对称轴,n,用同样的方法,可以找出五条对称轴,所以五角星有五条对称轴,【跟踪训练】,2.如图,ABC中,边AB,BC的垂直平分线交于点P. (1)求证:PA=PB=PC. (2)点P是否也在边AC的垂直平分线上呢?由此你能得出什么结论?,A,P,C,B,结论:三角形三条边的垂直平分线相交于一点,这个点到三角形三个顶点的距离相等.,1.(临沂中考)正方形ABCD边长为a,点E,F分别是对角线BD上的两点,过点E,F分别作AD,AB的平行线,如图所示,则图中阴影部分的面积之和等于 【解析】运用轴对称、转化的思想,阴 影部分面积等于正方形面积的一半,即 . 答案:,2. 有A,B,C
10、三个村庄,现准备要建一所学校,要求学校到三个村庄的距离相等,请你确定学校的位置.,A,B,C,【提示】学校在连接任意两点的两条线段的垂直平分线的交点处.,3.如图,若AC=12,BC=7,AB的垂直平分线交AB于E,交AC于D,求BCD的周长.,D,C,B,E,A,点此播放教学视频,4.如图,如果ACD的周长为18cm,ABC的周长为28cm, DE是BC的垂直平分线,根据这些条件,你可以求出哪条线段的长?,(1)ACD的周长AD CDAC18cm. (2)ABC的周长ABACBC28cm.,(3)由DE是BC的垂直平分线得:BDCD;所以ADCD ADBDAB.,(4)由(2)中式子(1)中
11、式子得BC10cm.,【解析】,5.如图,A,B是路边两个新建小区,要在公路边增设一个 公共汽车站.使两个小区到车站的路程一样长,该公共汽 车站应建在什么地方?,【提示】连接AB,作AB的垂直平分线,则与公路的 交点就是要建的公共汽车站.,通过本课时的学习,需要我们:,1.了解轴对称及线段的垂直平分线的有关性质. 2.会灵活运用这些性质来解决问题 3.用尺规作出线段的垂直平分线并据此得到作出一个 轴对称图形的一条对称轴的方法. 4.找出轴对称图形的任意一对对应点,连接这对对应点, 作出连线的垂直平分线,该垂直平分线就是这个轴对称图形 的一条对称轴,在数学的领域中,提出问题的艺术比解答问题的艺术更为重要. 康托尔,点此播放教学视频,