收藏 分享(赏)

再谈晶体管的饱和状态和饱和压降.doc

上传人:dzzj200808 文档编号:2985841 上传时间:2018-10-01 格式:DOC 页数:11 大小:184KB
下载 相关 举报
再谈晶体管的饱和状态和饱和压降.doc_第1页
第1页 / 共11页
再谈晶体管的饱和状态和饱和压降.doc_第2页
第2页 / 共11页
再谈晶体管的饱和状态和饱和压降.doc_第3页
第3页 / 共11页
再谈晶体管的饱和状态和饱和压降.doc_第4页
第4页 / 共11页
再谈晶体管的饱和状态和饱和压降.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、个人档案呢称:香雪茶 文章(7 ) 访问(13364) 评论( 77) 投票( 138) 订阅本博 介绍: 在整个电子产业链中,除了材料、封装没搞过,其它基本都做过。如此也就是能混碗饭吃而已。现在科技发展日新月异,跟不上了,开个博客,重新学习。全部博文:2011年 - 2月 1月 查看全部博文博客首页再谈晶体管的饱和状态和饱和压降发布时间:2011-02-15 12:00:43 在前面所写的 晶体管参数在实际使用中的意义中,提到了晶体管的饱和压降问题,有网友对此问题提出了不同意见。当时,没太在意。过后对此问题又重新思考一下,同时,在网上看看对问题的看法,结果发现,许多的理解是错误的,一些解释也

2、是不完全的。因此,想对此问题重点说说。如有不同意见,欢迎讨论。众所周知,一个普通的双极型晶体管有二个 PN 结、三种工作状态(截止、饱和、放大)和四种运用接法(共基、共发、共集和倒置) 。对这两个 PN 结所施加不同的电位,就会使晶体管工作于不同的状态:两个 PN 结都反偏 晶体管截止;两个 PN 结都导通 晶体管饱和:一个 PN 结正偏,一个 PN 结反偏 晶体管放大电路(注意:如果晶体管的发射结反偏、集电结正偏,就是晶体管的倒置放大应用) 。要理解晶体管的饱和,就必须先要理解晶体管的放大原理。从晶体管电路方面来理解放大原理,比较简单:晶体管的放大能力,就是晶体管的基极电流对集电极电流的控制

3、能力强弱。控制能力强,则放大大。但如果要从晶体管内部的电子、空穴在 PN 结内电场的作用下,电子、空穴是如何运动的、晶体管的内电场对电子、空穴是如何控制的等一些物理过程来看,就比较复杂了。对这个问题,许多教课书上有不同的描述。我对此问题的理解是:当晶体管处于放大状态时,基极得到从外电源注入的电子流,部分会与基区中的空穴复合,此时产生的复合电流,构成了基极电流的主体。由于此时晶体管是处于放大状态,故集电结处于反偏。又因集电结的反偏,就在此 PN 结的内部,就形成了一个强电场,电场的方向由集电极指向基极,即集电极为正,基极为负。也就是说,在此 PN 结(集电结)联接集电极的一端,集中了大量带正电的

4、空穴。当从基极注入的电子流进入基区后,一部分与基区内部的空穴进行了复合,而大部分电子则在强电场的作用下,被“拉”到了集电极,这种被电场“拉”到集电极的电子流,构成了集电极电流的主要组成部分。由于从基极注入的电子流,只有很少一部分在基区被复合,大部分电子是在集电结的强电场的作用下,集中到了集电极,构成了集电极电流的主体,所以,此时的集电极电流要远大于从基极注入的电流,这就是晶体管放大功能的物理模型。此时,是以 NPN 型晶体管进行举例。如果是 PNP 型晶体管,则只要把晶体管的极性由正换成负就行。如果要从基极电流、集电极电流、发射极电流的组成、流动,PN 结的能级等等方面来讲清晶体管的放大机理,

5、就更复杂了。这在许多专业的教课书都有解释。现在的问题是:如果增大晶体管基极的电流注入,晶体管还能工作在放大区吗?如果不能,则晶体管会从放大状态,向什么状态过渡?另外,基极电流的注入,能不能无限增加?也就是说,晶体管对基极电流有限制吗?限制的条件是什么?这就要从晶体管的放大状态,进入另一个状态的 饱和状态的讨论。在下面的讨论中,以共发射极电路进行。其它形式的放大电路,都可以用这种方法进行。众所周知,从晶体管的发射极、基极和集电极电位的关系中,可以非常方便地对晶体管的工作状态作出判断。对处于共发射极放大的 NPN 型晶体管而言,集电极电位基极电位发射极电位时,晶体管工作于放大状态。随着基极注入电流

6、的增大,流出该管的集电极电流也就增大。此时流过负载电阻 Rc 的电流同时增加。此时,因晶体管工作于放大状态,故晶体管的集电极电流可用由下式表示:Ic=Iceo+*ib当忽略晶体管的反向漏电流 Iceo 时,Ic*ib可见,随着基极电流的增加,集电极电流以基极电流的 倍同步增加。此时,串于集电极回路的电阻 Rc 上的压降,也就随着 Ic 增大而增大。因晶体管的集电极电位 Vce=电源电压减去集电极 Rc 上的压降,即Vce=VcIc*Rc;对于硅材料组成的双极型晶体管来讲,PN 结的正向导通电压为0.7V,因此一般在工程中认为:当基极注入的电流,让晶体管的 Ic 与 Rc 的积满足下列公式时(V

7、ce-Ic*Rc) -Vb0V(注意:此时集电结近似零偏压,已不是原来的反偏状态了)式中:Vce 为晶体管集电极 发射极间的电压,Vb 为晶体管基极的电压。就认为此晶体管已开始进入饱和状态。但因这时晶体管的 Ic 仍能随着 Ib 的增大而增大,只是已不符合 Ic=Iceo+*ib 而已。这就是在工程中常说的“晶体管处于临界饱和状态”,又称“临界工作状态” 。此时如果继续加大基极的注入电流,晶体管的集电极电位将进一步降低,当出现晶体管的基极注入已不能使晶体管的 Ic 随之增大时(即(Vce-Ic*Rc )-Vb=常数时) ,我们就称此晶体管“进入深饱和状态” 。此时,晶体管的基极电位为最高(此现

8、象,对 N-P-N 晶体管而言。如果是 P-N-P 型晶体管,则只要在所有电源前加一负号即可得出相同的结论) ,即晶体管的两个 PN 结均处于正偏状态。由此可以得出晶体管饱和的定义:当晶体管的两个 PN 结均处于正偏时,此晶体管就处于饱和状态。在实际的放大应用中,如果放大电路是用于小信号放大,只要晶体管的静态工作点设置正确,晶体管一般不会进入饱和区。但如果晶体管放大电路处理的是信号幅值较大的信号,例音频功放的输出级,则晶体管极有可能进入饱和区。此时,就会在输出波形上出现“削顶”现象。这就是因输入信号的幅值太高,晶体管进入饱和区后,对信号失去放大作用,同时对信号产生限幅作用后的结果。由此可得出第

9、一个问题的答案:随着基极电流的增加,晶体管的工作状态将由放大区向饱和区过渡,当基极注入的电流达到一定程度时,晶体管的饱和程度将加深。最后出现无论基极电流怎么增加,集电极电流将维持不变,此时,晶体管进入深饱和状态。在以上叙述中,没有提到电流的量纲问题。也就是说,晶体管在小电流工作时,同样会出现饱和状态。实际上,晶体管的静态工作点设置偏左上方时,也就是当电路的 Vc 较低、Rc 较大时,晶体管就较容易进入饱和状态。也就是说,晶体管工作时的动态范围与所设置的晶体管工作点密切相关,而与晶体管的能流过多大的电流无关。需要指出的是:在晶体管电路中,无论改变电路中的哪个参数,都会对晶体管的工作点产生影响。对

10、此,有兴趣的可以自己计算和验证。这里谈的饱和状态,是晶体管在工作中的一种物理特性。也就是说,晶体管的饱和状态,是晶体管的一种特性,此特性与晶体管的 Icm 无关。晶体管的 Icm 是不能随外电路的设计而改变的,换句话说,晶体管的 Icm 对应用者来讲,是使用前就已由晶体管本身所决定的一项与晶体管安全使用密切相关的参数,而晶体管的饱和状态,则是由外电路所提供的条件决定的。晶体管在饱和工作时,对晶体管的可靠性不一定会产生不良影响。例音频功放最大输出是在输出波形的失真达到10%时测试的。此时用示波器观察,可见输出波形已出现严重的削顶。在前面的讨论中曾提到,加大晶体管的基极注入电流,能使晶体管从放大区

11、向饱和区过渡。基极电流能任意加大吗?回答是否定的。我查了一下现在的一些晶体管规格书,在极限参数这一栏里,许多功率型晶体管都增加了“最大基极电流”这一项。对此参数为什么要进行定义?其理由是显而易见的。我想大概有以下几个原因:1.晶体管是电流控制型器件,从晶体管的结构上讲,基极的内引线是晶体管中最细的。这就决定了晶体管基极的电流容量是最小的。在实践中,也感到晶体管的发射结是比较脆弱的:发射结的反向击穿电压较低,基极电流不能过大,是发射结在使用中应考虑的问题之一。2.晶体管导通时,其基极电流的组成又是最复杂的,在 半导体器件可靠性这本书中,有对基极电流的详细描述,现摘录如下:“硅平面晶体管,基极电流

12、成分是相当复杂的,当晶体管正常工作时,组成基极电流的共有十一种成份:1.基极总电流,2.发射区少子的复合和存贮电流,3.发射结势垒产生-复合电流,4.发射结附近的产生- 复合电流,5.发射结电容的位移电流,6. 基区少子的复合和存贮电流,7.集电区少子的复合和存贮电流,8.集电结势垒萄产生- 复合电流,9. 集电结电容的位移电流,10.发射区少子的扩散和漂移电流, 11.集电区少子的扩散和漂移电流。 ”“这十一种基极电流成份均与温度有关。正因为这样,在晶体管参数中,凡是与基极电流 Ib有关的参数,随温度变化一般均比较复杂,很难找到准确的定量关系,其原因就在于,对于不同结构,不同工艺制成的不同类

13、型的晶体管,这些成份的温度关系是不一样的”。“上述各基极电流分量在不同工作条件下或不同结构的晶体管中,所占的比重及其作用也是不同的。比如对微功耗晶体管,其工作电流往往是微安数量级,所以发射结势垒的产生-复合电流及发射结附近表面的产生复合电流占重要地位。而对一般晶体管只有工作在小电流区时,此二项电流成份才予以注意。再如集电区少子复合和存贮电流在线性放大区与总电流相比可以忽略,而在饱和区则是基极电流的主要组成部分。另外,两个结的位移电流只有在调频使用条件下才起作用等等”。在该书中,同时给出了 PN 结在导通时的温度变化趋势,现只引用结果:“对于硅 PN 结,当保持正向电流不变时,结温每升高1 ,正

14、向压降低2mV ;而当保持正向压降不变时,温度每升高1,正向电流增加 7.8%。换言之,PN 结正向压降具有负温度系数,而正向电流具有正温度系数。正是 PN 结的这个基本温度关系导致了某些结型器件(例如双极型功率晶体管、可控硅整流器、功率开关二极管以及雪崩二极管等)的热不稳定性,甚至导致热失效。我想,这可能就是某些功率器件要给出最大基极电流的主要原因。讨论晶体管的饱和特性,是为了更好地理解晶体管的一项直流参数饱和压降 Vces。晶体管处于饱和状态时,可近似看成是开关处于开启状态。这与直接导通是有区别的。因为,所有的半导体模拟开关,永远做不到在开启时完全与导线联通完全相等。其原因不说自明。在处于

15、晶体管饱和状态时,集电极与发射极之间的电压降,在工程上称为“反向饱和压降”,记作:Vces ;而把基极与发射极之间的电压降称为“正向饱和压降”,记作:Vbes。饱和压降是电流的函数,且与电流成正比。当晶体管用于放大电路时,饱和压降对放大电路的动态范围有影响,这在音频功放中尤其明显,当所选晶体管的电流较小时,其不失真输出功率受饱和压降的影响,很难达到设计要求。此时如采用提高电源电压的方案,则就可能会出现晶体管 Pcm 的超范围使用,结果使整机的可靠性下降。因此在对音频功放的晶体管选型时饱和压降是一个很重要的参数。此问题在正常使用中,同样重要。例有些生产玩具的公司,在驱动电机时,控制电路采用两对功

16、率晶体管,接成全桥形式。这种用法,在原理上是正确的。但在晶体管的工作状态设置、电源、电流的取值方面,往往出现问题。追究主要原因,是对晶体管饱和压降、放大的片面理解所致。在这种使用中,凡是出问题的,可归纳以下几点:1.晶体管工作于大电流临界饱和状态,此时晶体管的功耗已达极限,随着工作时间的延长,晶体管的结温升高,使元器件进入恶性循环,晶体管就会永久失效。解剖这类晶体管,往往可见是超功耗损坏;2.在此种应用电路中,晶体管往往工作在大电流状态,而晶体管的放大,是在一种特定的条件下测的,在晶体管工作在大电流时,放大将会下降。此时如果驱动不足,则晶体管就会工作在放大区,这样,晶体管很快就会因超功耗而失效

17、。严重时,通电后不到1分钟,晶体管就冒烟了。3.应用时对电机是感性负载的认识不足,只计算正常工作时,晶体管的状态,而忽略了电机反向工作过程时,产生的反向电动势对晶体管的影响。当晶体管用于开关电路时,对饱和压降就更要重视。在这里,不谈饱和压降与 tstdtf 等开关参数密切相关,只说一下饱和压降对电路的实际影响原理:当晶体管用于开关电路时,一般,因电源电压较高,故此时晶体管的动态范围已不是主问题。问题往往出在转换的过渡区。在这种使用模式时,晶体管在导通时,往往处于深饱和状态。当在晶体管基极注入反向电流时,首先要在基区复合掉多余的电荷,然后电荷才会对集电结产生影响。饱和越深,则复合这些电荷的时间也

18、越长(这就是晶体管 ts 的物理模型) 。在此种情况下,如果基极的反向驱动脉冲时间不够或幅度不足,就会延长晶体管在过渡时,经过放大区的时间。这对用于高压情况时的晶体管来讲是非常危险的。至少会使晶体管的失效率明显升高。因此,当晶体管应用于这种电路时,除了要对晶体管的选用加以注意外,同时也要关注驱动脉冲对晶体管的影响。晶体管饱和压降的温度特性,可用下式说明:Vces 的温度系数dVces/dT 为正。即在高温下,Vces 增加。这是因为:Vces=Vbe-Vbc+Ic*rcs+Ie*res式中:rcs 和 res 分别是晶体管导通时,集电极和发射极的串联电阻。对硅平面管,VcesIc*rcs如果保

19、持 Ic 不变,则 Vces 的温度特性决定于集电极串联电阻 rcs,而 rcs 正比于 T。以上就是我对晶体管饱和、饱和压降的理解。不一定全面。有不同意见,大家继续讨论。我以为,对技术问题,只有通过争论,才能得到提高。2011-2-15于深圳标签: 半导体 晶体管 分享 阅读(2598 ) I 评论( 22) I 收藏 I 推荐到我的小组 I 打印有 26 名读者喜欢此文 最后更新:2011-02-15 14:07:27测试程序对晶体管的影响晶体管参数在实际使用中的意义(续四.博主的精彩博文 更多 再谈晶体管的饱和状态和饱和压降 晶体管参数在实际使用中的意义(续四) 晶体管参数在实际使用中的

20、意义(续二) 测试程序对晶体管的影响 晶体管参数在实际使用中的意义(续三)随机精彩文章 中国工程师到底是缺乏才华还是缺乏展示的舞台? 电动车寻得市场新突破 BYD 电动公交车 K9获得. 这是技术的战争 电池霸权 大陆芯 IC 设计10年内很难超越台湾 MStar 攻下奢侈品牌手机,高端切入打法刁钻有 16 名读者发表评论 - 再谈晶体管的饱和状态和饱和压降网友: 1260585805327 2011-02-21 07:06评论: 简单问题复杂化。臭鸡蛋 (0)鲜花 (0)网友:香雪茶 2011-02-18 18:00评论: 回答网友 WCC:接受你的观点。当时,只想表示电流大饱和压降也大,在

21、表述上的确不够严谨。谢谢!臭鸡蛋 (0)鲜花 (0)网友: WCC 2011-02-18 16:58评论: 楼主说得很好!不过有一处不当:“饱和压降是电流的函数,且与电流成正比。“ 确实是正相关的,但不是成正比,这并不是线性的,看一下特性曲线就明白了。臭鸡蛋 (0)鲜花 (0)网友: 香雪茶 2011-02-18 11:28评论:回答 hszgl 网友: 你所说的放大原理,应该是半导体内部电子运动的情况吧?对此,我认为只要在概念上不错,就可以了。因为我的主要工作是工程,而不是要对别人说清楚电子在晶体管内部是如果运动。当然,如果两者能兼得,就更好了,但我做不到。 顺便说一句:我现在只有一本苏州大

22、学出版的美国施敏所著、由赵鹤鸣、钱敏、黄秋萍译的半导体器件-物理与工艺 许多东西,都是对此书的理解。臭鸡蛋 (0)鲜花 (0)网友: hszgl 2011-02-18 11:00评论:博主写了很多,但是很抱歉,鄙人看来博主并未真正理解晶体管放大原理。推荐 Donald Neamen 的半导体物理与器件,里面对于晶体管的放大原理,放大系数的决定因数,bipolar 的设计方法均有比较详细的描述,而且浅显易懂。臭鸡蛋 (0)鲜花 (0)网友: 香雪茶 2011-02-18 09:45评论:对 NOP-WANG 的一些提问,在必要时,以后我会以博文回答。在此,我只想对 NOP-WANG 说这样一句话

23、:对别人的文字,不要断章取义,而要从全文来看。我认为你这种找问题的思想很好,但问题是怎么找。另外,我没有读过国外关于晶体管电路、知识方面的原版书籍,所以,我不知道国外工程界是如何用文字来阐述晶体管的放大、截止、饱和的。在此,针对以下的问题: “我只问博主一个问题,你说:”由于此时晶体管是处于放大状态,故集电结处于反偏。 “那你能否解释下,在从基极注入的电子流(有基极电流的时候) ,集电极开路的情况下,集电极,集电节上的电子是怎么运动的。 究竟是:由于此时晶体管是处于放大状态,故集电结处于反偏? 还是应该是:由于此时晶体管集电结处于反偏,故此时晶体管是处于放大状态呢?” 问你一个问题:在集电极开

24、路状况时,晶体管工作在什么状态?另外:集电节?笔误。应该是集电结,还是集电极?臭鸡蛋 (0)鲜花 (0)网友: 王久东 NOP_WANG 2011-02-18 00:33评论: 只说好,但不知道好在那里的人,不厚道。臭鸡蛋 (0)鲜花 (0)网友: 王久东 NOP_WANG 2011-02-18 00:29评论:不好意思我又来捣乱,但是就象博主说的,技术是在不断的讨论中变的更加的清晰明了的。 我会分段对博主的博文谈点个人的看法。有许多的疑问需要博主解答。首先我不同意博主的“对这两个 PN 结所施加不同的电位,就会使晶体管工作于不同的状态”因为 BJT 是一个电流型的控制器件,所以电压不应该成为

25、导致 BJT 进入各种状态的绝对诱因,这个就好比我们直接接触220V 的火线会电到我们,但是我们经过了试电笔在碰到火线我们可以安然,所以电压不是绝对诱因,在一定的条件下才可以成为诱因,那就是可以产生足够的电流。至于大家都为什么都习惯用电压来描述 BJT 的工作状态呢,个人认为:最大的原因应该就是我们对教科书的金科玉律“发射极正偏,集电极反偏,三极管处于放大状态“,没有任何的怀疑全盘接受(其实也只有在我们国家的教科书中有这样的定义) 。个人认为这样的定义太片面,缺少了必要的前提。第二个原因是因为我们在应用中看到的都是输入小的信号(电压) ,而输出却获得了大的信号(电压) ,电压的变化是我们直观的

26、可以看到的变化和比较容易获得的参数。楼主的博文:从晶体管电路方面来理解放大原理,比较简单:晶体管的放大能力,就是晶体管的基极电流对集电极电流的控制能力强弱。控制能力强,则放大大。但如果要从晶体管内部的电子、空穴在 PN 结内电场的作用下,电子、空穴是如何运动的、晶体管的内电场对电子、空穴是如何控制的等一些物理过程来看,就比较复杂了。 ”读完通篇,那么这样的一个电流放大器件(准确的讲是一个电流的控制器件)是怎么实现了电压的放大了的呢?博主好象说的不是很清楚。那敢问博主这个比较简单的原理,它到底是一个怎么样的原理呢?怎么就把电流的控制变成电压的变化了?还有那既然 BJT 是一个电流型控制器件,那博

27、主能不能从电流的角度来分析下 BJT 的三种工作状态呢?臭鸡蛋 (0)鲜花 (0)网 王久东 NOP_WANG 2011-02-18 00:25友:评论:楼主的博文:”对这个问题,许多教课书上有不同的描述。我对此问题的理解是:当晶体管处于放大状态时,基极得到从外电源注入的电子流,部分会与基区中的空穴复合,此时产生的复合电流,构成了基极电流的主体。由于此时晶体管是处于放大状态,故集电结处于反偏。又因集电结的反偏,就在此 PN 结的内部,就形成了一个强电场,电场的方向由集电极指向基极,即集电极为正,基极为负。也就是说,在此 PN结(集电结)联接集电极的一端,集中了大量带正电的空穴。当从基极注入的电

28、子流进入基区后,一部分与基区内部的空穴进行了复合,而大部分电子则在强电场的作用下,被“拉”到了集电极,这种被电场“ 拉”到集电极的电子流,构成了集电极电流的主要组成部分。由于从基极注入的电子流,只有很少一部分在基区被复合,大部分电子是在集电结的强电场的作用下,集中到了集电极,构成了集电极电流的主体,所以,此时的集电极电流要远大于从基极注入的电流,这就是晶体管放大功能的物理模型。此时,是以 NPN 型晶体管进行举例。如果是 PNP 型晶体管,则只要把晶体管的极性由正换成负就行。 “我只问博主一个问题,你说:”由于此时晶体管是处于放大状态,故集电结处于反偏。 “那你能否解释下,在从基极注入的电子流

29、(有基极电流的时候) ,集电极开路的情况下,集电极,集电节上的电子是怎么运动的。究竟是:由于此时晶体管是处于放大状态,故集电结处于反偏?还是应该是:由于此时晶体管集电结处于反偏,故此时晶体管是处于放大状态呢?后续疑问后续提出。臭鸡蛋 (0)鲜花 (0)网友: vrituoso 2011-02-17 18:40评论: 晶体管也可以看作是一个压控流型器件,还是一个电阻变换器件。transistor=transform + resistor。臭鸡蛋 (0)鲜花 (0)网友: vrituoso 2011-02-17 18:23评论:(Vce-Ic*Rc)-Vb0V 这个公式应该有问题,应该是: (Vc

30、-Ic*Rc)-Vb0V,Vc-Ic*Rc 是集电极的电位,Vb 是基极电位,那么 (Vc-Ic*Rc)-Vb 应该就是集电结的反向偏压,只有当集电结的反向偏压为负的时候,晶体管才进入饱和区。臭鸡蛋 (0)鲜花 (0)网友: /枫* 2011-02-17 17:31评论: 学习了,非常受益。谢谢!臭鸡蛋 (0)鲜花 (0)网友: 伟111111 2011-02-17 16:35评论: 如果要保护管子因该怎么做臭鸡蛋 (0)鲜花 (0)网友: 伟111111 2011-02-17 16:33评论:当运放上电是终点电源是否是零.我的理解是(我门用的正负供电) 正电可能会对电容冲电 .而三极管 C

31、接到电容的后端,在瞬间上电时电容相当于短路吗.C 极是不是也相当于加了电.开机时 B 级提供了足够的BE 电流是三极管处于饱和状态.臭鸡蛋 (0)鲜花 (0)网友: chameleon 2011-02-17 15:41评论: 如今还有如此严谨的人呢,难得啊。臭鸡蛋 (0)鲜花 (0)网友: King1999 2011-02-17 13:25评论: 写的真好,受益匪浅啊,学习了。臭鸡蛋 (0)鲜花 (0)网友: hygneu 2011-02-17 09:48评论: 道理上讲明白了。但是如何设计 bipolar 饱和电路呢? yzhu05 有一片博文,介绍了计算过程。记得好像是先计算负载电流 IC

32、,然后把 Beta 设计到20 左右,计算 Ib。臭鸡蛋 (0)鲜花 (0)网友: zeng_gj 2011-02-17 09:28评论: 赞!臭鸡蛋 (0)鲜花 (0)修改网友: sudezhao 2011-02-17 08:20评论: 写得真不错臭鸡蛋 (0)鲜花 (0)网友: 1253031941672 2011-02-17 08:15评论: 学习了,非常受益。谢谢!臭鸡蛋 (0)鲜花 (0)网友: 青岛大海 2011-02-15 15:43评论: 再谈晶体管的饱和状态和饱和压降让我更清晰了。臭鸡蛋 (0)鲜花 (0)网友: 编辑部 2011-02-15 13:38评论: 编辑部发来感谢信!臭鸡蛋 (0)鲜花 (0)我来评论 - 再谈晶体管的饱和状态和饱和压降您的昵称: sudezhao您的评论:你还可以输入1000 字

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报