收藏 分享(赏)

六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc

上传人:tangtianxu1 文档编号:2965896 上传时间:2018-10-01 格式:DOC 页数:15 大小:562.50KB
下载 相关 举报
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc_第1页
第1页 / 共15页
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc_第2页
第2页 / 共15页
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc_第3页
第3页 / 共15页
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc_第4页
第4页 / 共15页
六年级奥数. 数论.质数、合数、约数、倍数 (ABC级).学生版.doc_第5页
第5页 / 共15页
点击查看更多>>
资源描述

1、MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 1 of 15知识框架一、 质数与合数一个大于 1 的自然数,如果除了 1 和它本身,再不能被其他自然数整除,那么它就叫做质数(也叫做素数) 。一个大于 1 的自然数,如果除了 1 和它本身,还能被其他自然数整除,那么它就叫做合数。要特别记住:0 和 1 不是质数,也不是合数。质数有无限多个。最小的质数是 2。合数有无限多个。最小的合数是 4。常用的 100 以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、

2、83、89、97,共计 25 个;除了 2 其余的质数都是奇数;除了 2 和 5,其余的质数个位数字只能是 1,3,7 或 9.考点: 值得注意的是很多题都会以质数 2 的特殊性为考点. 除了 2 和 5,其余质数个位数字只能是 1,3,7 或 9.这也是很多题解题思路,需要大家注意.二、 判断一个数是否为质数的方法根据定义如果能够找到一个小于 p 的质数 q(均为整数) ,使得 q 能够整除 p,那么 p 就不是质数,所以我们只要拿所有小于 p 的质数去除 p 就可以了;但是这样的计算量很大,对于不太大的 p,我们可以先找一个大于且接近 p 的平方数 ,再列出所有不大于 K 的质数,用这些质

3、数去除2Kp,如没有能够除尽的那么 p 就为质数.例如:149 很接近 ,根据整除的性质 149 不能被 2、3、5、7、11 整除,所以 149 是142质数.常用质数整理:101、103、107、109、113、127、131、137、139、149、151、157、163、167、173、179、181、191、193、197、1993、1997、1999、2003、401、223、2011、2017三、 约数、公约数与最大公约数概念(1)约数:在正整数范围内约数又叫因数,整数 a 能被整数 b 整除,a 叫做 b 的倍数,b 就叫做 a 的约数;质数合数、约数倍数MSDC 模块化分级讲

4、义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 2 of 15(2)公约数:如果一个整数同时是几个整数的约数,称这个整数为它们的“公约数”;(3)最大公约数:公约数中最大的一个就是最大公约数;(4)0 被排除在约数与倍数之外1. 求最大公约数的方法 分解质因数法:先分解质因数,然后把相同的因数连乘起来例如: , ,所以 ;23172537(231,5)721 短除法:先找出所有共有的约数,然后相乘例如: ,所以 ;89632(,8)236 辗转相除法:每一次都用除数和余数相除,能够整除的那个余数,就是所求的最大公约数用辗转相除法求两个数的最大公约数的步骤如下:先

5、用小的一个数除大的一个数,得第一个余数;再用第一个余数除小的一个数,得第二个余数;又用第二个余数除第一个余数,得第三个余数;这样逐次用后一个余数去除前一个余数,直到余数是 0 为止那么,最后一个除数就是所求的最大公约数(如果最后的除数是 1,那么原来的两个数是互质的)例如,求 600 和 1515 的最大公约数: ; ;1560235 601285; ; ;所以 1515 和 600 的最大公约数是3152830 2859 3152. 最大公约数的性质几个数都除以它们的最大公约数,所得的几个商是互质数;几个数的公约数,都是这几个数的最大公约数的约数;几个数都乘以一个自然数 ,所得的积的最大公约

6、数等于这几个数的最大公约数乘以 n n3. 求一组分数的最大公约数先把带分数化成假分数,其他分数不变;求出各个分数的分母的最小公倍数 a;求出各个分数的分子的最大公约数 b; 即为所求a4. 约数、公约数最大公约数的关系(1)约数是对一个数说的;(2)公约数是最大公约数的约数,最大公约数是公约数的倍数四、 倍数的概念与最小公倍数1. 倍数:一个整数能够被另一整数整除,这个整数就是另一整数的倍数1) 公倍数:在两个或两个以上的自然数中,如果它们有相同的倍数,那么这些倍数就叫做它们的公倍数2) 最小公倍数:公 倍 数 中 最 小 的 那 个 称 为 这 些 正 整 数 的 最 小 公 倍 数 。M

7、SDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 3 of 152. 求最小公倍数的方法分解质因数的方法;例如: , ,所以 ;23172537231,53712短除法求最小公倍数;例如: ,所以 ;8396218,2326,(,)ab3. 最小公倍数的性质两个数的任意公倍数都是它们最小公倍数的倍数两个互质的数的最小公倍数是这两个数的乘积两个数具有倍数关系,则它们的最大公约数是其中较小的数,最小公倍数是较大的数4. 求一组分数的最小公倍数方法步骤先将各个分数化为假分数;求出各个分数分子的最小公倍数 ;求出各个分数分母的最大公约数a; 即为所求例

8、如: ba35,15,412()4注意:两个最简分数的最大公约数不能是整数,最小公倍数可以是整数.例如: 1,4,235. 倍数、公倍数、最小公倍数的关系(1)倍数是对一个数说的;(2)最小公倍数是公倍数的约数,公倍数是最小公倍数的倍数五、 最大公约数与最小公倍数的常用性质1. 两个自然数分别除以它们的最大公约数,所得的商互质。如果 为 、 的最大公约数,且 , ,那么 互质,所以 、 的最小mABAmaBba、 AB公倍数为 ,所以最大公约数与最小公倍数有如下一些基本关系:ab ,即两个数的最大公约数与最小公倍数之积等于这两个数的积;ABmaba最大公约数是 、 、 、 及最小公倍数的约数B

9、AB2. 两个数的最大公约和最小公倍的乘积等于这两个数的乘积。即 ,此性质比较简单,学生比较容易掌握。(,),abab3. 对于任意 3 个连续的自然数,如果三个连续数的奇偶性为MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 4 of 15a)奇偶奇,那么这三个数的乘积等于这三个数的最小公倍数例如: ,210 就是 567 的最小公倍数567210b)偶奇偶,那么这三个数的乘积等于这三个数最小公倍数的 2 倍例如: ,而 6,7,8 的最小公倍数为833618注:性质 3 不是一个常见考点,但是也比较有助于学生理解最小公倍数与数字乘积之间的

10、大小关系,即“几个数最小公倍数一定不会比他们的乘积大”。六、 求约数个数与所有约数的和1 求任一整数约数的个数一个整数的约数的个数是在对其严格分解质因数后,将每个质因数的指数(次数) 加 1 后所得的乘积。如:1400 严格分解质因数之后为 ,所以它的约数有(3+1)(2+1) (1+1)=432=243257个。(包括 1 和 1400 本身)约数个数的计算公式是本讲的一个重点和难点,授课时应重点讲解,公式的推导过程是建立在开篇讲过的数字“唯一分解定理”形式基础之上,结合乘法原理推导出来的,不是很复杂,建议给学生推导并要求其掌握。难点在于公式的逆推,有相当一部分常考的偏难题型考察的就是对这个

11、公式的逆用,即先告诉一个数有多少个约数,然后再结合其他几个条件将原数“还原构造” 出来,或者是“ 构造出可能的最值 ”。2 求任一整数的所有约数的和一个整数的所有约数的和是在对其严格分解质因数后,将它的每个质因数依次从 1 加至这个质因数的最高次幂求和,然后再将这些得到的和相乘,乘积便是这个合数的所有约数的和。如: ,所以 21000 所有约数的和为32105723()(1)(17480此公式没有第一个公式常用,推导过程相对复杂,需要许多步提取公因式,建议帮助学生找规律性的记忆即可。(1)特殊质数 2、5,质数的个位数特征(2)要注意观察约数、公约数、最大公约数;倍数、公倍数、最小公倍数的内在

12、关系;(3)整数唯一分解定理:让学生自己初步领悟“任何一个数字都可以表示为的结构,而且表达形式唯一 ”. 重难点MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 5 of 15【例 1】 在 19、197、2009 这三个数中,质数的个数是( ).(A) 0 (B) 1 (C) 2 (D) 3【巩固】 大约 1500 年前,我国伟大的数学家祖冲之,计算出 的值在 3.1415926 和 3.1415927 之间,成为世界上第一个把 的值精确到 7 位小数的人现代人利用计算机已经将 的值计算到了小 数点后 515 亿位以上这些数排列既无序又无规

13、律但是细心的同学发现:由左起的第一位 3是质数,31 也是质数,但 314 不是质数,那么在3141,31415,314159,3141592,31415926,31415927 中,哪些是质数?【例 2】 小晶最近迁居了,小晶惊奇地发现他们新居的门牌号码是四位数同时,她感到这个号码很容易记住,因为它的形式为 ,其中 ,而且 和 都是质数( 和 是两个数字)具有这abababab种形式的数共有多少个?【巩固】 自然数 是一个两位数,它是一个质数,而且 的个位数字与十位数字都是质数,这样的NN自然数有多少个?【例 3】 一个两位数,数字和是质数而且,这个两位数分别乘以 3,5,7 之后,得到的数

14、的数字和都仍为质数满足条件的两位数为 例题精讲MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 6 of 15【巩固】 三位数 满足:它的所有质因数之和是 。这样的三位数 有 个。A26A【例 4】 用数字卡片 1,1,2,2,3,3,4,4,5,5,6,7,9,9(不允许把 6 倒过来当作 9,也不许把 9 倒过来当作 6)组成七个不同的两位质数,这七个质数之和等于_【巩固】 如果一些不同质数的平均数是 21,那么这些质数中最大的一个可能是多少? 【例 5】 都是质数,如果 ,那么 。abc、 、 342abcb【巩固】 , , 都是质数,

15、并且 , , ,那么 _ 。abc3ab4c6dcdMSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 7 of 15【 例 6】 将 60 拆 成 10 个 质 数 之 和 , 要 求 最 大 的 质 数 尽 可 能 小 , 那 么 其 中 最 大 的 质 数 是 多 少 ?【巩固】 将 50 分拆成 10 个质数的和,要求其中最大的质数尽可能大,则这个最大的质数是多少?【例 7】 有些三位数,它的各位数字之积为质数,这样的三位数最小是_,最大是_。【巩固】 万尼亚想了一个三位质数,各位数字都不相同如果个位数字等于前两个数字的和,那么这个数是

16、几?【例 8】 用 L 表示所有被 3 除余 1 的全体正整数如果 L 中的数(1 不算)除 1 及它本身以外,不能被 L的任何数整除,称此数为“ L质数” 问:第 8 个“ L质数”是什么?MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 8 of 15【巩固】 将八个不同的合数填入下面的括号中,如果要求相加的两个合数互质,那么 A 最小是几?A=( )+( )=( )+ ( )=( )+( ) =( )+( )【例 9】 一个自然数,它的最大的约数和次大的约数的和是 111,这个自然数是_.【巩固】 一个两位数有 6 个约数,且这个数最小

17、的 3 个约数之和为 10,那么此数为几?【例 10】 两个整数 A、 B 的最大公约数是 C,最小公倍数是 D,并且已知 C 不等于 1,也不等于 A 或B, C+D=187,那么 A+B 等于多少? MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 9 of 15【巩固】 若 a , b , c 是三个互不相等的大于 0 的自然数,且 a + b + c = 1155 ,则它们的最大公约数的最大值为 ,最小公倍数的最小值为 ,最小公倍数的最大值为 【例 11】 在 1 到 100 中,恰好有 6 个约数的数有多少个? 【 巩固巩固 】 恰

18、有 8 个约数的两位数有 _个 【例 12】 动物园的饲养员给三群猴子分花生,如只分给第一群,则每只猴子可得 12 粒;如只分给第二群,则每只猴子可得 15 粒;如只分给第三群,则每只猴子可得 20 粒那么平均给三群猴子,每只可得多少粒? 【 巩固巩固 】 加工某种机器零件,要经过三道工序,第一道工序每名工人每小时可完成 6 个零件,第二道工序每名MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 10 of 15工人每小时可完成 10 个零件,第三道工序每名工人每小时可完成 15 个零件.要使加工生产均衡,三道工序最少共需要多少名工人?(假设

19、这三道工序可以同时进行)【例 13】 一次考试,参加的学生中有 得优, 得良, 得中,其余的得差,已知参加考试的学生不满1731250 人,那么得差的学生有多少人?【 巩固巩固 】 一次考试,参加的学生中有 得优, 得良, 得中,其余的得差,已知参加考试的学生不满17413100 人,那么得差的学生有多少人?【例 14】 两个自然数 a,b 的最小公倍数等于 50,问 ab 有多少种可能的数值?【 巩固巩固 】 已知 a,b,c 是三个自然数,且 a 与 b 的最小公倍数是 60,a 与 c 的最小公倍数是 270。求 b 与 c的最小公倍数。MSDC 模块化分级讲义体系 六年级奥数.数论.

20、质数合数、约数倍数(ABC 级).学生版 Page 11 of 15【例 15】 如图,在长 500 米、宽 300 米的长方形广场的外围,每隔 2.5 米摆放一盆花,现要改为每隔 2米摆放一盆花,并且广场的 4 个顶点处的花盆不动,则需增加_盆花;在重新摆放花盆时,共有_盆花不用挪动。【 巩固巩固 】 有一些小朋友排成一行,从左面第一人开始每隔 2 人发一个苹果;从右面第一人开始每隔 4 人发一个桔子,结果有 10 个小朋友苹果和桔子都拿到.那么这些小朋友最多有多少人?【随练 1】 炎黄骄子 菲尔兹奖被誉为“数学界的诺贝尔奖”,只奖励 40 岁以下的数学家华人数学家丘成桐、陶哲轩分别于 19

21、82 年、2006 年荣获此奖我们知道正整数中有无穷多个质数(素数) ,陶哲轩等证明了这样一个关于质数分布的奇妙定理:对任何正整数 k,存在无穷多组含有 k 个等间隔质数(素数)的数组例如, 时,3,5,7 是间隔为 2 的 3 个质数;5,11,17 是间隔为k6 的 3 个质数:而 , , 是间隔为 12 的 3 个质数(由小到大排列,只写一组 3 个质数即可) 课堂检测MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 12 of 15【随练 2】 用 0-9 这 10 个数字组成若干个质数,每个数字都恰好用一次,这些质数的和最小是 。【

22、随练 3】 用 0,1,2,9 这 10 个数字组成 6 个质数,每个数字至多用 1 次,每个质数都不大于500,那么共有多少种不同的组成 6 个质数的方法请将所有方法都列出来【随练 4】 三个两两不同的正整数,和为 126,则它们两两最大公约数之和的最大值为 【随练 5】 甲、乙两人同时从 A 点背向出发,沿 400 米的环形跑道行走,甲每分钟走 80 米,乙每分钟走 50 米,两人至少经过多长时间才能在 A 点相遇? MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 13 of 15【作业 1】 图中圆圈内依次写出了前 25 个质数;甲顺

23、次计算相邻二质数之和填在上行方格中;乙顺次计算相邻二质数之积填在下行方格中 乙乙乙乙乙“乙乙”乙乙“乙乙”978913117532351561285. 问:甲填的数中有多少个与乙填的数相同?为什么?【作业 2】 从 19 中选出 8 个数排成一个圆圈,使得相邻的两数之和都是质数排好后可以从任意两个数字之间切开,按顺时针方向读这些八位数,其中可以读到的最大的数是多少?【作业 3】 已知三个合数 A, B, C 两两互质,且 ABC=1101128,那么 A+B+C 的最大值为 【作业 4】 用 09 这 10 个数字组成若干个合数,每个数字都恰好用一次,那么这些合数之和的最小值是_【作业 5】

24、某质数加 6 或减 6 得到的数仍是质数,在 50 以内你能找出几个这样的质数?把它们写出来.家庭作业MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 14 of 15【作业 6】 将 37 拆成若干个不同的质数之和,有多少种不同的拆法?将每一种拆法中拆出的那些质数相乘,得到的乘积中,哪个最小?【作业 7】 少年宫手工组的小朋友们做工艺品“猪娃娃”。每个人先各做一个纸“猪娃娃”;接着每 2 个人合做一个泥“猪娃娃”;然后每 3 个人合做一个布“ 猪娃娃” ;最后每 4 个人合做一个电动“ 猪娃娃”。这样下来,一共做了 100 个“猪娃娃”,由

25、此可知手工组共有 个小朋友。【作业 8】 3 条圆形跑道,圆心都在操场中的旗杆处,甲、乙、丙 3 人分别在里圈、中圈、外圈沿同样的方向跑步.开始时,3 人都在旗杆的正东方向,里圈跑道长 千米,中圈跑道长 千米,外圈1514跑道长 千米.甲每小时跑 千米,乙每小时跑 4 千米,丙每小时跑 5 千米.问他们同时出发,8132几小时后,3 人第一次同时回到出发点? 【作业 9】 甲、乙两数的最小公倍数是 90,乙、丙两数的最小公倍数是 105,甲、丙两数的最小公倍数是 126,那么甲数是多少? MSDC 模块化分级讲义体系 六年级奥数.数论. 质数合数、约数倍数(ABC 级).学生版 Page 15 of 15【作业 10】 如图,A、B、C 是三个顺次咬和的齿轮,当 A 转 4 圈时,B 恰好转 3 圈:当 B 转 4 圈时,C 恰好转 5 圈,则 A、B、C 的齿数的最小数分别是多少? CBA学生对本次课的评价特别满意 满意 一般家长意见及建议家长签字:教学反馈

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 专业基础教材

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报