1、 压电传感器前置放大电路的设计姓名:陈贤波学号:SX1201139一:电荷放大电路电荷放大器原理:电荷变换是该电荷放大器的核心部分,是一个具有电容负反馈的,输入阻抗极高的高增益运算放大器。它与压电式传感器及其电缆构成的等效电路如图-1 所示。QUnUo f fCaRaCcCiRiRfCfA-+UoUo= Uo n+ Uo f图-1 压电式传感器及其电缆构成的等效电路其中: 为压电传感器的等效电容, 为压电式传感器的等效绝缘漏电阻, 为aCaRCc电缆等效电容, 为放大器的输入电容, 为放大器的输入阻抗, 为反馈电容,i i f是等效输入噪声电压, 是等效输入失调电压。如将 折算到输入端,其等效
2、电容nUofUfC为 ( 1+K) ,K 为运放的开环增益。由于反馈电容、传感器电容、电缆电容及放大器电f容并联,不计算噪声和失调电压的影响,电荷放大器的输出电压为ficafa CKCjwRKiQ110(1.1)运算放大器的开环增益 K 很大(约为 104106) ,故 远大于 aR+ i1,f/)(远大于 iCa,此时 a, i, a, c和 i都可以忽略不计,即fK)1(压电传感器本身的电容大小和电缆长短对电荷放大器输出的影响可以忽略。(1.2)(1)ofQUC式中 C= + + 因为放大器是高增益的,K 1,所以一般情况下(1+K) C,则aci fC有(1.3)ofQUC上式表明,当反
3、馈电容 一定时,电荷放大器的输出电压与传感器产生电荷成正比,f在实际电路中,考虑到电压灵敏度和量程的问题,一般 的值在 10010000pF 范围内选fC择。,本设计选定 10000pF,即 10nF。当开环增益 A 很大, 远大于 aR1+ i, 远大于fK/)1(fK)1(iCa不能忽略, (219 )式可表示为:jwGCQKjwRQUfff f0)1((1.4) 当频率够低时, 就不能忽略。因此式(2.20)是表示电荷放大器jGf的低频响应。F 越低, 时,其输出电压幅值为:ffCfCQU20(1.5)可以看出,这是截止频率点电压值电压输出值,即相对应的下限截止频率为(1.6) fHCR
4、f21若忽略运放的输入电容和输入电导,同时忽 ,则上限频率为:fG(1.7))(21cSCLRf其中 为输入电缆直流电阻,本设计设为 30。CR本设计选用 为 1000MEG,经计算 。f zLHf016.传感器参数:压电传感器 PZT 压电常数 d33=450PC/N, d31=-265PC/N, 相对介电常数 2100 ,故压电传感器固有电容为:(1.8)nFSCrs71.30若传感器输入电缆分布电容为 ,设有 100m,则 。 3.87mpF10Cc0Hf510。要测的信号频率范围:1Hz5KHz,故满足要求。zH压电传感器 PZT 压电常数 d33=450PC/N, d31=-265P
5、C/N, 传感器配重 10 克,加速度范围010g,本设计选用 ,电荷 G 公式为: 3(1.9)FQ3故所测量的电荷范围为 0441pC。本设计电荷放大器仿真电路如下图-2 所示,仿真结果如图-3 所示,结果分析如表-1 所示。图-2 电荷放大器电路 图-3 电压输出仿真表-1 电荷放大器仿真结果仿真结果峰值 49.451mV 理想值 44.1mV 偏置 5.4547mV谷值 49.451mV 理想值 -49.1mV 偏置 5.4547mV二:滤波电路在实际检测过程中,由于外部干扰信号、外部环境的变化等因素的影响,噪声信号会叠加在有用的低频信号中在输出端输出。为此,电荷放大器的设计中必须选用
6、一种合适的滤波器对输出信号进行必要的处理。巴特沃斯型滤波器具有最好的的平坦效应,在通带内和阻带内没有波纹。由于传感器输出的信号很小,本文选用巴特沃斯滤波器。查表得,增益为 2 时,图-4 低通滤波器图-5 低通滤波器截止频率为 5kHz 时幅频特性曲线由于前面仿真结果有很大的偏置,故本设计需要滤除低频信号,本设计选用最简单的高通滤波器,即一介无源高通滤波器。设计要求信号频率范围是:1Hz5KHz,根据(2.1)RCwc21选用 100uF 的电容,1.59k 的电阻。三:反相放大保护输出此级电路主要作用是实现输出电压信号与电荷信号相位同步和二级放大,由于电荷转换级本身是一个积分器电路,输入输出
7、端的电压相位会反向,保持电荷放大器输出电压和输入电荷成比例放大。因为电路电阻的不完全匹配等问题,电路放大倍数并不十分准确,通过调节该电路对电压进行两级放大和补偿校准,如图-6 电路所示,调节电位器 ,可1R以使输出电压在增益 010 倍之间任意变化。同时通过输出端的双限 0V稳压管,防止输出电压超出后续接入的 PXI 系统输入电压上下限。起到保护数据采集卡的作用。图-6 反相放大电路总仿真电路图如图-7 所示,仿真结果如图-8 所示,结果分析如图-9 所示。图-7 总仿真电路图图-8 最终仿真结果表-2 最终仿真数据分析仿真结果峰值 437.244mV 理想值 441mV 偏置 89.325uV谷值 -437.546mV 理想值 -441mV 偏置 89.325uV四:数据采集本设计采用基于 PXI 采集卡进行采集,软件用 Labview 进行编程,程序如图-9所示。图-9 采集程序