1、- 1 -第一章 空间几何体知识点归纳1、空 间几何体的结构:空间几何体分 为多面体和旋转体和简单组合体常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式:一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱。棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。1空间几何体的三视图和直 观图投影:中心投影 平行投影(1)定义:几何体的正视图、侧视图 和俯视图统称为几何体的三视图。(2)三视图
2、中反应的长、宽、高的特点:“长对正”, “高平齐”, “宽相等 ”2、空间几何体的直观图(表示空间图形的平面图) . 观察者站在某一点观察几何体,画出的图形 .3、斜二测画法的基本步骤:建立适当直角坐标系 (尽可能使更多的点在坐标轴上)xOy建立斜坐标系 ,使 =450(或 1350) ,注意它们确定的平面表示水平平面;画对应图形,在已知图形平行于 X 轴的线段,在直观图中画成平行于 X轴,且长度保持不变;在已知图形平行于 Y 轴的线段,在直观图中画成平行于 Y轴,且长度变为原来的一半; 一般地,原图的面 积是其直观图面 积的 倍,即22S原 图 直 观4、空间几何体的表面积与体积圆柱侧面积;
3、 圆锥侧面积:lrS2侧 面 lr侧 面圆台侧面积: ()R侧 面体积公式:; ; hSV柱 体 hS31锥 体 13VhSS下 下台 体 上 上球的表面积和体积:.一般地,面积比等于相似比的平方,体积比等于相似比的立方。3244R球球 ,第二章 点、直线、平面之间的位置关系及其论证1 、公理 1:如果一条直线上两点在一个平面内,那么这条直 线在此平面内,AlBl公理 1 的作用:判断直线是否在平面内2、公理 2:过不在一条直线上的三点,有且只有一个平面。O2O1hl rRl BA BA C- 2 -若 A,B,C 不共线,则 A,B,C 确定平面 推论 1:过直线的直线外一点有且只有一个平面
4、若 ,则点 A 和 确定平面ll推论 2:过两条相交直线有且只有一个平面若 ,则 确定平面mn,推论 3:过两条平行直线有且只有一个平面若 ,则 确定平面A,公理 2 及其推论的作用:确定平面;判定多边形是否为平面图形的依据。3、公理 3:如果两个不重合的平面有一个公共点,那么它 们 有且只有一条过该点的公共直线。,PlP且公理 3 作用:(1)判定两个平面是否相交的依据;(2)证明点共线、线共点等。4、公理 4:也叫平行公理,平行于同一条直 线的两条直线平行 . ,abcA5、定理:空间中如果两个角的两 边分别对应平行,那么 这两个角相等或互 补。,1212abA且 与 方 向 相 同 ,
5、80 且 与 方 向 相 反 作用:该定理也叫等角定理,可以用来 证明空间中的两个角相等。6、线线位置关系:平行、相交、异面。 ,abAabA异 面(1)没有任何公共点的两条直线平行(2)有一个公共点的两条直线相交(3)不同在任何一个平面内的两条直线叫异面直线7、线面位置关系:直线在平面内、平行、相交aaAaA8、面面位置关系:平行、相交。9、线面平行:(即直线与平面无任何公共点 )lA lmA mnP L ab bab a 1+218012 2121ab=(1)a=(2) a=(3)a = b A- 3 -判定定理:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行。(只需在平面内
6、找一条直线和平面外的直线平行就可以)/ab证明两直线平行的主要方法是:三角形中位线定理:三角形中位线平行并等于底边的一半;平行四边形的性质:平行四边形两组对边分别平行;线面平行的性质:如果一条直线平行于一个平面,经过这条直线的平面与这个平面相交,那么这条直线和它们的交线平行;aabAA平行线的传递性: ,abcA面面平行的性质:如果一个平面与两个平行平面相交,那么它们的交线平行;abA垂直于同一平面的两直线平行; abbA直线与平面平行的性质:如果一条直线平行于一个平面, 经过这条直线的平面与这个平面相交,那么 这条直线和它们的交线平行;(上面的)10、面面平行:(即两平面无任何公共点)(1)
7、判定定理:一个平面内的两条相交直线与另一个平面平行, 则这两个平面平行。 ,abA(2)两平面平行的性质:性质:如果一个平面与两平行平面都相交,那么它们的交线平行;abAA性质:平行于同一平面的两平面平行;A- 4 -性质:夹在两平行平面间的平行线段相等;,ACBDBD性质:两平面平行,一平面上的任一条直线与另一个平面平行;aaAA或11、线面垂直:定义:如果一条直线垂直于一个平面内的任意一条直线,那么就说这条直线和这个平面垂直。判定:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。,lmnlA性质:垂直于同一个平面的两条直线平行。abbA性质:垂直于同一直线的两平面平行 l1
8、2、面面垂直:定义:两个平面相交,如果它们所成的二面角是直二面角,就说这 两个 平面互相垂直。判定:一个平面经过另一个平面的一条垂线,则这两个平面垂直。 l(只需在一个平面内找到另一个平面的垂线就可证明面面垂直)性质:两个平面互相垂直,则一个平面内垂直于交 线的直线垂直于另一个平面。证明两直线垂直和主要方法:利用勾股定理证明两相交直线垂直;利用等腰三角形三线合一证明两相交直线垂直;利用线面垂直的定义证明(特别是证明异面直线垂直);利用三垂线定理证明两直线垂直(“三垂”指的是“线面垂”“线影垂”, “线斜垂”) a POA ,POAPaPAaOA图 线线 线如 : 是 在 平 面 上 的 射 影
9、 又 直 且即 : 影 垂 直 斜 垂 直 , 反 之 也 成 立 。mll- 5 -空间角及空间距离的计算1. 异面直线所成角:使异面直线平移后相交形成的夹角,通常在两异面直线中的一条上取一点,过该点作另一条直线平行线,2. 斜线与平面成成的角:斜线与它在平面上的射影成的角。如图: PA 是平面 的一条斜线,A 为斜足,O 为垂足,OA 叫斜线 PA 在平面 上射影, 为线PAO面角。3.二面角:从一条直线出发的两个半平面形成的图形,如图为二面角 ,二l面角的大小指的是二面角的平面角的大小。二面角的平面角分别在两个半平面内且角的两边与二面角的棱垂直用二面角的平面角的定义求二面角的大小的关键点
10、是: 确构成二面角两个半平面和棱;明确二面角的平面角是哪个?而要想明确二面角的平面角,关 键是看该角的两边是否都和棱垂直。(求空间角的三个步骤是“一找”、 “二证”、 “三计算”)5.点到平面的距离:指该点与它在平面上的射影的连线段的长度。如图:O 为 P 在平面 上的射影,线段 OP 的长度为点 P 到平面 的距离求法通常有:定义法和等体积法等体积法:就是将点到平面的距离看成是三棱锥的一个高。如图在三棱锥 VABC中有: SABCSSSV- -,l OABlOAlB如 图 : 在 二 面 角 中 , 棱 上 一 点 , , , 的 平 面 角 。且 则 为 二 面 角ab如 图 : 直 线 与 异 面 , /b, 直 线 a与 直 线 b的 夹 角 为 两 异面 直 线 与 所 成 的 角 , 异 面 直 线 所 成 角 取 值 范 围 是 ( 0, 9