1、 努力+勤奋+信心=成功 戴氏教育集团 1DSE 金牌数学专题系列 二元一次方程组(难点、考点、易错点)一、 导入:讲个故事:“从前有个太监”有人耐不住问:“下面呢?”继续讲故事:“下面?没了啊”一、知识点回顾(一)二元一次方程组1.二元一次方程:像 xy2 这样的方程中含有两个未知数(x 和 y) ,并且未知数的指数都是 1,这样的方程叫做二元一次方程.2.二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解.3.二元一次方程组:把两个方程 xy3 和 2x3y10 合写在一起为 像这样,把两个二元一次方程组合在一起,就组成了一个二元一次方程组.4.二元
2、一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解.5.代入消元法:由二元一次方程组中的一个方程,把一个未知数用含另一个未知数的式子表示出来,再代入另一方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.6.加减消元法:两个二元一次方程中同一个未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程.这种方法叫做加减消元法,简称加减法.(二)二元一次方程组的实际应用列方程组解应用题的常见类型主要有:. 行程问题.包括追及问题和相遇问题,基本等量关系为:路程速度时间;. 工程问题.一般分为两类,一类是
3、一般的工程问题,一类是工作总量为 1 的工程问题.基本等量关系为:工作量工作效率 工作时间;3. 和差倍分问题.基本等量关系为:较大量较小量多余量,总量倍数 1 倍量;努力+勤奋+信心=成功 戴氏教育集团 24. 航速问题.此类问题分为水中航行和风中航行两类,基本关系式为:顺流(风):航速静水(无风)中的速度水(风)速逆流(风):航速静水(无风)中的速度水(风)速5. 几何问题、年龄问题和商品销售问题等.二、 专题讲解 专题一 错题分析【误解】A 或 D【思考与分析】二元一次方程组的解是使方程组中的每一个方程的左右两边的值都相等的两个未知数的值,而 中的一个方程的解,并不能让另一方程左、右两边
4、相等,所以它们都不是这个方程组的解,只有 C 是正确的验证方程组的解时,要把未知数的值代入方程组中的每个方程中,只有使每个方程的左、右两边都相等的未知数的值才是方程组的解【正解】C把式代入式得 8-3y+3y=8,0y=0.所以 y 可以为任何值.所以原方程组有无数组解【正解】由式得 x=8-3y 努力+勤奋+信心=成功 戴氏教育集团 3把式代入式得 2(8-3y)+5y=-21 ,解得 y=37.把 y=37 代入式 得 x=8-337,解得 x=-103. 所以【例 3】 解方程组【错解】 方程- 得: 3y=0,所以 y=0,把 y=0,代入 得 x=2,所以原方程组的解为【分析】 在-
5、 时出错.【正解】 - 得:(x2y)(xy)2(2)x2yxy4y=4 y=4把 y=4 代入 得 x= 6,所以原方程组的解为【小结】 两方程相减时 ,易出现符号错误,所以要特别细心.【例 4】 某化妆晚会上,男生脸上涂蓝色油彩,女生脸上涂红色油彩.游戏时,每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的 2 倍少 1 人;而每个女生都看见涂蓝色油彩的人数是涂红色油彩的人数的 ,问晚会上男、女生各有几人?错解: 设晚会上男生有 x 人,女生有 y 人.根据题意,得 把代入,得 x= ( 2x-1) ,解得 x=3.把 x=3 代入,得 y=5.所以 答:晚会上男生 3 人,女生 5 人.
6、努力+勤奋+信心=成功 戴氏教育集团 4【分析】 本题错在对题中的数量关系没有弄清.每个男生都看见涂红色油彩的人数比涂蓝色油彩的人数的 2 倍少 1 人,这里涂蓝色油彩的人数不是题中所有的男生人数,而是除自己之外的男生人数,同理,女生看到的人数也应是除自己以外的女生人数.正解: 设晚会上男生有 x 人,女生有 y 人.根据题意,得把代入,得x= 2(x-1)11 ,解得 x=12.把 x=12 代入 ,得 y=21.所以答:晚会上男生 12 人,女生 21 人.解二元一次方程组的问题看似简单,但如果你稍不注意,就有可能犯如下错误.【例 5】 解方程组 【错解】 方程 得: 2x=4,原方程组的
7、解是: x=2【错因分析】 错解只求出了一个未知数 x,没有求出另一个未知数 y.所以求解是不完整的.【正解】 (接上)将 x=2 带入得: y=0.所以原方程组的解为【小结】 用消元法来解方程组时,只求出一个未知数的解,就以为求出了方程组的解,这是对二元一次方程组的解的意义不明 确的表现.应牢记二元一次方程组的解是一组解,而不是一个解.努力+勤奋+信心=成功 戴氏教育集团 5【例 6】解方程组【错解】由式得 y=2x-19 把式代入式得 2(2x19【错因分析】 “错解” 在把变形后的式 代入式 时,符号书写出现了错误当解比较复杂的方程组时,应先化简,在求出一个未知数后,可以将它代入化简后的
8、方程组里的任意一个方程中,求出第二个未知数,这样使得运算方便,避免出现错误【正解一】化简原方程组得 努力+勤奋+信心=成功 戴氏教育集团 6【正解二】化简原方程组得6+得 17x=114,【小结】解二元一次方程组可以用代入法,也可以用加减法一般地说,当方程组中有一个方程的某一个未知数的系数的绝对值是 1 或有一个方程的常数项是 0 时,用代入法比较方便;当两个方程中某一未知数的系数的绝对值相等或成整数倍时,用加减法比较方便专题二 思维点拨【例 1】 小红到邮局寄挂号信,需要邮资元角. 小红有票额为角和角的邮票若干张,问各需多少张这两种面额的邮票?【思考与解】要解此题,第一步要找出问题中的数量关
9、系. 寄信需邮资元角,由此可知所需邮票的总票额要等于所需邮资 3.8 元. 再接着往下找数量关系,所需邮票的总票额等于所需角邮票的总票额加上所需角邮票的总票额. 所需角邮票的总票额等于单位票额角与所需角邮票数目的乘积. 同样的,所需角邮票的总票额等于单位努力+勤奋+信心=成功 戴氏教育集团 7票额角与所需角邮票数目的乘积. 这就是题中蕴含的所有数量关系.第二步要抓住题中最主要的数量关系,构建等式. 由图可知最主要的数量关系是: 所需邮资=所需邮票的总票额.第三步要在构建等式的基础上找出这个数量关系中牵涉到哪些已知量和未知量. 已知量是所需邮资.8 元,两种邮票的单位票额.6 元和 0.8 元,
10、未知量是两种邮票的数目.第四步是设元(即设未知量) ,并用数学符号语言将数量关系转化为方程. 设 0.6 元的邮票需 x 张,0.8 元的邮票需 y 张,用字母和运算符号将其转化为方程: 0.6x+0.8y=3.8. 第五步是解方程,求得未知量. 由于两种邮票的数目都必须是自然数,此二元一次方程可以用列表尝试的方法求解.方程的解是第六步是检验结果是否正确合理. 方程的两个解中两种邮票的数目均为正整数,将两解代入方程后均成立,所以结果是正确合理的.第七步是答,需要 1 张 6 角的邮票和 4 张 8 角的的邮票,或需要 5 张 6 角的邮票和 1张 8 角的的邮票.【例 2】小聪全家外出旅游,估
11、计需要胶卷底片张. 商店里有两种型号的胶卷: 型每卷张底片,型每卷张底片. 小聪一共买了卷胶卷,刚好有张底片. 求两种胶卷的数量.【思考与解】第一步: 找数量关系. 型胶卷数型胶卷数胶卷总数,型胶卷的底片总数型胶卷的底片总数底片总数. 型胶卷的底片总数=每卷型胶卷所含底片数型胶卷数,型胶卷的底片总数每卷型胶卷所含底片数型胶卷数.第二步: 找出最主要的数量关系,构建等式. 型胶卷数型胶卷数胶卷总数,型胶卷的底片总数型胶卷的底片总数底片总数.第三步: 找出未知量和已知量. 已知量是: 胶卷总数,度片总数,每卷型胶卷所含底片数,每卷型胶卷所含底片数;未知量是: 型胶卷数,型胶卷数.努力+勤奋+信心=
12、成功 戴氏教育集团 8第四步: 设元,列方程组. 设型胶卷数为 x,型胶卷数为 y,根据题中数量关系可列出方程组: 第五步:答:型胶卷数为 3,型胶卷数为 1.【小结】我们在解这类题时,一般就写出设元、列方程组并解出未知量和答这几步,如有必要可以加上验证这一步.其他步骤可以省略.【例】 用加减法解方程组【思考与分析】 经观察,我们发现两个方程中 y 的系数互为相反数,故将两方程相加,消去 y.解: ,得 x=8.解得 x=2.把 x=2 代入 ,得 2+2y=3.解得 y= .所以,原方程组的解为:【思考与分析】 经观察,我们发现 x 的系数成倍数关系,故先将方程2 再与方程作差消去 x 较好
13、.解: ,得 4x-6y=16. ,得 11y=-22.解得 y=-2.把 y=-2 代入,得 x-3 (-2). 努力+勤奋+信心=成功 戴氏教育集团 9解得 x=1.所以原方程组的解为【思考与分析】 如果用代入法解这个方程组,就要从方程组中选一个系数比较简单的方程进行变形,用含一个未知数的式子表示另一个未知数,然后代入另一个方程.本题中,方程的系数比较简单,应该将方程进行变形.如果用加减法解这个方程组,应从计算简便的角度出发,选择应该消去的未知数.通过观察发现,消去 x 比较简单.只要将方程两边乘以 2 ,然后将两方程相减即可消去 x. 解法 1: 由得 x=8-2y. 把代入得2(8-2
14、y )+5y=21,解得 y=5.把 y=5 代入 得 x=-2.所以原方程组的解为:解法 2: 2 得 2x+4y=16. - 得 2x+5y-(2x+4y)=21-16 ,解得 y=5.把 y=5 代入 得 x=-2.所以原方程组的解为【小结】 我们解二元一次方程组时,用到的都是消元的思想,用代入法还是加减法解题,原则上要以计算简便为依据. 努力+勤奋+信心=成功 戴氏教育集团 10【例 6】 用代入法解方程组【思考与分析】 经观察,我们发现方程为用 y 表示 x 的形式,故将代入,消去 x.解: 把代入,得 (y+3)-8y=14.解得 y=-1.把 y=-1 代入,得 x=2.所以原方
15、程组的解为【例 7】 用代入法解方程组【思考与分析】 经观察比较,我们发现方程更易于变为用含一个未知数的代数式表示另一个未知数的形式,故选择变形,消去 y.解: 由,得 y=2x-5. 把代入,得x+4(2x-5)=2. 解得 x=2.把 x=2 代入 ,得 y=-1.所以原方程组的解为:【例 8】 甲、乙两厂,上月原计划共生产机床 90 台,结果甲厂完成了计划的 112,乙厂完成了计划的 110,两厂共生产机床 100 台,求上月两厂各超额生产了多少台机床?【思考与分析】 我们可以采用两种方法设未知数,即直接设法和间接设法.直接设法就是题目要求什么就设什么为未知数,本题中就是设上月甲厂超额生
16、产 x 台,乙厂超额生产 y 台;而间接设法就是问什么并不设什么,而是采用先设出一个中间未知数,求出努力+勤奋+信心=成功 戴氏教育集团 11这个中间未知数,再利用它同题中要求未知数的联系,解出所要 求的未知数,题中我们可设上月甲厂原计划生产 x 台,乙厂原计划生产 y 台.解法一:直接设法.设上月甲厂超额生产 x 台,乙厂超额生产 y 台,则共超额了 1009010(台) ,而甲厂计划生产的台数是 台,乙厂计划生产的台数是 台.根据题意,得 答:上月甲厂超额生产 6 台,乙厂超额生产 4 台.解法二:间接设法.设上月甲厂原计划生产 x 台,乙厂原计划生产 y 台.根据题意,得 所以 x(11
17、2 1)5012 6,y( 110 -1)40104.答:上月甲厂超额生产 6 台,乙厂超额生产 4 台.【例 9】 某学校组织学生到 100 千米以外的夏令营去,汽车只能坐一半人,另一半人步行.先坐车的人在途中某处下车步行,汽车则立即回去接先步行的一半人.已知步行每小时走 4 千米,汽车每小时走 20 千米(不计上下车的时间) ,要使大家下午 5 点同时到达,问需何时出发.努力+勤奋+信心=成功 戴氏教育集团 12【思考与分析】 我们从行程问题的 3 个基本量去寻找,可以发现,速度已明确给出,只能从路程和时间两个量中找出等量关系,有题意知,先坐车的一半人,后坐车的一半的人,车三者所用时间相同
18、,所以根据时间来列方程组.如图所示是路程示意图,正确使用示意图有助于分析问题,寻找等量关系.解:设先坐车的一半人下车点距起点 x 千米,这个下车点与后坐车的一半人的上车点相距 y 千米,根据题意得化简得从起点到终点所用的时间为所以出发时间为:17107.即早晨 7 点出发.答:要使学生下午 5 点到达,必须早晨 7 点出发.【例 10】 小明的妈妈为了准备小明一年后上高中的费用,现在以两种方式在银行共存了 2000 元钱,一种是年利率为 2.25的教育储蓄,另一种是年利率为 2.25的一年定期存款,一年后可取出 2042.75 元,问这两种储蓄各存了多少钱?(利息所得税利息金额20%,教育储蓄
19、没有利息所得税)【思考与分析】 设教育储蓄存了 x 元,一年定期存了 y 元,我们可以根据题意可列出表格:努力+勤奋+信心=成功 戴氏教育集团 13解:设存一年教育储蓄的钱为 x 元,存一年定期存款的钱为 y 元,则答:存教育储蓄的钱为 1500 元,存一年定期的钱为 500 元.【反思】 我们在解一些涉及到行程、收入、支出、增长率等的实际问题时,有时候不容易找出其等量关系,这时候我们可以借助图表法分析具体问题中蕴涵的数量关系,题目中的相等关系随之浮现出来.专题三 竞赛数学【例 1】 已知方程组 的解 x,y 满足方程 5x-y=3,求 k 的值.【思考与分析】 本题有三种解法,前两种为一般解
20、法,后一种为巧解法.() 由已知方程组消去 k,得 x 与 y 的关系式,再与 5x-y=3 联立组成方程组求出x,y 的值,最后将 x,y 的值代入方程组中任一方程即可求出 k 的值.() 把 k 当做已知数,解方程组,再根据 5x-y=3 建立关于 k 的方程,便可求出k 的值.() 将方程组中的两个方程相加,得 5x-y=2k+11,又知 5x-y=3,所以整体代入即可求出 k 的值.努力+勤奋+信心=成功 戴氏教育集团 14把 代入,得 ,解得 k=-4.解法二: 3 ,得 17y=k-22 ,解法三: +,得 5x-y=2k+11.又由 5x-y=3,得 2k+11=3,解得 k=-
21、4.【小结】 解题时我们要以一般解法为主,特殊方法虽然巧妙,但是不容易想到,有思考巧妙解法的时间,可能这道题我们已经用一般解法解了一半了,当然,巧妙解法很容易想到的话,那就应该用巧妙解法了.【例 2】 某种商品价格为每件元,某人身边只带有元和元两种面值的人民币各若干张,买了一件这种商品. 若无需找零钱,则付款方式有哪几种(指付出元和元钱的张数)?哪种付款方式付出的张数最少?【思考与分析】 本题我们可以运用方程思想将此问题转化为方程来求解. 我们先找出问题中的数量关系,再找出最主要的数量关系,构建等式. 然后找出已知量和未知量设元,列方程组求解.最后,比较各个解对应的 x+y 的值,即可知道哪种
22、付款方式付出的张数最少. 解: 设付出元钱的张数为 x,付出元钱的张数为 y,则 x,y 的取值均为自然数. 依题意可得方程: 2x+5y=33. 因为 5y 个位上的数只可能是或,所以 2x 个位上数应为或. 努力+勤奋+信心=成功 戴氏教育集团 15又因为x 是偶数,所以x 个位上的数是,从而此方程的解为:由 得 x+y=12;由 得 x+y=15. 所以第一种付款方式付出的张数最少.答: 付款方式有种,分别是: 付出张元钱和张元钱;付出张元钱和张元钱;付出张元钱和张元钱. 其中第一种付款方式付出的张数最少.【例 3】 解方程组【思考与分析】 本例是一个含字母系数的方程组.解含字母系数的方
23、程组同解含字母系数的方程一样,在方程两边同时乘以或除以字母表示的系数时,也需要弄清字母的取值是否为零.解:由,得 y=4mx , 把代入,得 2x+5(4mx)=8 ,解得 (25m)x=-12 ,当 25m0,即 m 时,方程无解,则原方程组无解.当 25m0,即 m 时,方程解为将 代入,得故当 m 时,原方程组的解为 【小结】 含字母系数的一次方程组的解努力+勤奋+信心=成功 戴氏教育集团 16法和数字系数的方程组的解法相同,但注意求解时需要讨论字母系数的取值情况对于 x、y 的方程组 中,a 1、b 1、c 1、a 2、b 2、c 2 均为已知数,且 a1 与b1、a 2 与 b2 都
24、至少有一个不等于零,则 时,原方程组有惟一解; 时,原方程组有无穷多组解; 时,原方程组无解.【例 4】某中学新建了一栋 4 层的教学大楼,每层楼有 8 间教室,这栋大楼共有 4 道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对 4 道门进行了训练:当同时开启一道正门和两道侧门时,2 分钟内可以通过 560 名学生;当同时开启一道正门和一道侧门时,4 分钟可以通过 800 名学生.(1) 求平均每分钟一道正门和一道侧门各可以通过多少名学生?(2) 检查中发现,紧急情况时因学生拥挤,出门的效率将降低 20.安全检查规定,在紧急情况下全大楼的学生应在 5 分钟内通过这 4 道门安全撤
25、离.假设这栋教学大楼每间教室最多有 45 名学生,问:建造的这 4 道门是否符合安全规定?请说明理由.【思考与解】 (1)设平均每分钟一道正门可通过 x 名学生,一道侧门可以通过 y 名学生.根据题意,得所以平均每分钟一道正门可以通过学生 120 人,一道侧门可以通过学生 80 人.(2) 这栋楼最多有学生 4845=1440(人) .拥挤时 5 分钟 4 道门能通过52(120+80)(1-20%)=1600 (人).因为 16001440,所以建造的 4 道门符努力+勤奋+信心=成功 戴氏教育集团 17合安全规定.答:平均每分钟一道正门和一道侧门各可以通过 120 名学生、80 名学生;建
26、造的这 4道门符合安全规定.【例 5】某水果批发市场香蕉的价格如下表:张强两次共购买香蕉 50 千克(第二次多于第一次) ,共付款 264 元,请问张强第一次、第二次分别购买香蕉多少千克?【思考与分析】要想知道张强第一次、第二次分别购买香蕉多少千克,我们可以从香蕉的价格和张强买的香蕉的千克数以及付的钱数来入手.通过观察图表我们可知香蕉的价格分三段,分别是 6 元、5 元、4 元.相对应的香蕉的千克数也分为三段,我们可以假设张强两次买的香蕉的千克数分别在某段范围内,利用分类讨论的方法求得张强第一次、第二次分别购买香蕉的千克数.解:设张强第一次购买香蕉 x 千克,第二次购买香蕉 y 千克由题意,得
27、 040 时,由题意,得 (与 0x20,y40 相矛盾,不合题意,舍去) 当 20x25 时,25y30此时张强用去的款项为 5x+5y=5(x+y )=550=250264(不合题意,舍去).综合可知,张强第一次购买香蕉 14 千克,第二次购买香蕉 36 千克.答: 张强第一次、第二次分别购买香蕉 14 千克、36 千克.【反思】我们在做这道题的时候,一定要考虑周全,不能说想出了一种情况就认为万事大吉了,要进行分类讨论,考虑所有的可能性,看有几种情况符合题意.努力+勤奋+信心=成功 戴氏教育集团 18【例 6】 用如图中的长方形和正方形纸板做侧面和底面,做成如图的竖式和横式两种无盖纸盒.
28、现在仓库里有张正方形纸板和000 张长方形纸板,问两种纸盒各做多少个,恰好将库存的纸板用完?【思考与分析】我们已经知道已知量有正方形纸板的总数 1000,长方形纸板的总数2,未知量是竖式纸盒的个数和横式纸盒的个数. 而且每个竖式纸盒和横式纸盒都要用一定数量的正方形纸板和长方形纸板做成,如果我们知道这两种纸盒分别要用多少张正方形纸板和长方形纸板,就能建立起如下的等量关系:每个竖式纸盒要用的正方形纸板数 竖式纸盒个数 + 每个横式纸盒要用的正方形纸板数 横式纸盒个数 = 正方形纸板的总数每个竖式纸盒要用的长方形纸板数 竖式纸盒个数 + 每个横式纸盒要用的长方形纸板数 横式纸盒个数 = 长方形纸板的
29、总数通过观察图形,可知每个竖式纸盒分别要用张正方形纸板和张长方形纸板,每个横式纸盒分别要用张正方形纸板和张长方形纸板.解:由题中的等量关系我们可以得到下面图表所示的关系.设竖式纸盒做 x 个,横式纸盒做 y 个. 根据题意,得努力+勤奋+信心=成功 戴氏教育集团 194-,得 y=2000,解得 y=400.把 y=400 代入 ,得 x+800=1000,解得 x=200.所以方程组的解为因为 200 和 400 均为自然数,所以这个解符合题意.答: 竖式纸盒做个,横式纸盒做个,恰好将库存的纸板用完.三、 巩固练习:1)精心选一选(每题 7 分,共 35 分)1. 方程组 的解是( ).2.
30、 在一次小组竞赛中,遇到了这样的情况:如果每组 7 人,就会余 3 人;如果每组 8人,就会少 5 人.问竞赛人数和小组的组数各是多少?若设人数为 x,组数为 y,根据题意,可列方程组( ).3. 买甲、乙两种纯净水共用 250 元,其中甲种水每桶 8 元,乙种水每桶 6 元,乙种水的桶数是甲种水的桶数的 75%,设买甲种水 x 桶、乙种水 y 桶,则所列方程组中正确的是( ).努力+勤奋+信心=成功 戴氏教育集团 204. 一个两位数被 9 除余 2,如果把它的十位与个位交换位置,则所得的两位数被 9 除余 5,设个位数字为 x,十位数字为 y,则下面正确的是( ).(以下选项中 k1、k
31、2 都为整数)5. 用面值 l 元的纸币换成面值为 l 角或 5 角的硬币,则换法共有( )种.A. 4 B. 3 C. 2 D. 1二)用心填一填(每题 7 分,共 35 分)1. 一艘轮船顺流航行,每小时行 20 千米;逆流航行每小时行 16 千米.则轮船在静水中的速度为 _,水流速度为_.2. 一队工人制造某种工件,若平均每人一天做 5 件,那么全队一天就比定额少完成30 件;若平均每人一天做 7 件,那么全队一天就超额 20 件. 则这队工人有_人,全队每天制造的工件数额为_件.3. 已知甲、乙两人从相距 18 千米的两地同时相向而行,1 小时相遇.再同向而行如果甲比乙先走 小时,那么
32、在乙出发后 小时乙追上甲.设甲、乙两人速度分别为 x 千米/时、y 千米/时,则 x_,y_.4. 甲、乙二人练习赛跑,如果甲让乙先跑 10 米,那么甲跑 5 秒钟就能追上乙;如果乙让甲先跑 2 秒钟,那么乙跑 6 秒钟落后于甲 28 米,甲每秒钟跑_,乙每秒钟跑_.努力+勤奋+信心=成功 戴氏教育集团 215. 小强拿了十元钱去商场购买笔和圆规.售货员告诉他:这 10 元钱可以买一个圆规和三支笔或买两个圆规和一支笔,现在小强只想买一个圆规和一支笔,那么售货员应该找给他_元.三)耐心做一做(每题 10 分,共 30 分)1. 某人要在规定的时间内由甲地赶往乙地,如果他以每小时 50 千米的速度
33、行驶,就会迟到 24 分钟;如果他以每小时 75 千米的高速行驶,则可提前 24 分钟到达乙地,求他以每小时多少千米的速度行驶可准时到达.2. 一家商店进行装修,若请甲、乙两个装修组同时施工,8 天可以完成,需付两组费用共 3520 元;若先请甲组单独做 6 天,再请乙组单独做 12 天可以完成,需付两组费用共 3480 元.若只选一个组单独完成,从节约开支角度考虑,这家商店应选择哪个组?3. 参考消息报道,巴西医生马廷恩经过 10 年研究得出结论:卷入腐败行列的人容易得癌症,心肌梗塞,脑溢血,心脏病等病,如果将贪污受贿的 580 名官员和 600 名廉洁官员进行比较,可发现,后者的健康人数比
34、前者的健康人数多 272 人,两者患病或患病致死者共 444 人,试问贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分之几?答案一、精心选一选1. B 2. C 3. B 4. C 5. B二、用心填一填1.18 千米/时,2 千米/时.2. 25,155. 3. 4,6.4. 8 米,6 米. 5. 4.三、耐心做一做1. 【解题思路】由于甲地到乙地的距离不知道是多少,从甲地到乙地规定的时间也不知道,所以不能直接求速度.我们可以设甲地到乙地的路程和规定的时间为未知数,列方努力+勤奋+信心=成功 戴氏教育集团 22程求解,最后用速度路程时间得到标准速度.解:设甲、乙两地的之间距离为 s
35、 千米,从甲地到乙地的规定时间为 t 小时.根据题意,得解得 经检验,符合题意.则 60(千米/小时). 答:他以每小时 60 千米/小时的速度行驶可准时到达 .2. 【解题思路】由甲乙混做的时间和钱数我们可求出甲乙各自单独做需要的时间和费用,然后再进行比较.解:设甲组单独完成需 x 天,乙组单独完成需 y 天,则根据题意,得经检验,符合题意.即甲组单独完成需 12 天,乙组单独完成需 24 天.再设甲组工作一天应得 m 元,乙组工作一天应得 n 元.经检验,符合题意.所以甲组单独完成需 300123600(元) ,乙组单独完成需 140243360(元).故从节约开支角度考虑,应选择乙组单独
36、完成.努力+勤奋+信心=成功 戴氏教育集团 23答: 这家店应选择乙组单独完成.3. 【解题思路】由题意我们只要求出贪污受贿的官员和廉洁官员中的健康人数再分别与各自的总数作比即可得到贪污受贿的官员和廉洁官员中的健康人数各自占统计人数的百分比.解:设贪污受贿的官员中健康人数有 x 人,廉洁官员中健康人数有 y 人,根据题意,得答:贪污受贿的官员中健康人数占统计人数的 40,廉洁官员中健康人数占统计人数84四、 拓展训练1.解关于 x,y 的方程组 ,并求当解满足方程 4x3y21 时的 k 值2. 有两个长方形,第一个长方形的长与宽之比为 54,第二个长方形的长与宽之比为32,第一个长方形的周长
37、比第二个长方形的周长大 112cm,第一个长方形的宽比第二个长方形的长的 2 倍还大 6cm,求这两个长方形的面积.3.甲乙两人做加法,甲在其中一个数后面多写了一个 0,得和为 2342,乙在同一个加数后面少写了一个 0,得和为 65,你能求出原来的两个加数吗?4.某校 2006 年初一年级和高一年级招生总数为 500 人,计划 2007 年秋季初一年级招生人数增加 20,高一年级招生人数增加 25,这样 2007 年秋季初一年级、高一年级招生总数比 2006 年将增加 21,求 2007 年秋季初一、高一年级的招生人数各是多少?答案努力+勤奋+信心=成功 戴氏教育集团 24从而第一个长方形的
38、面积为:5x4x 20x 21620(cm 2) ;第二个长方形的面积为:3y2y 6y 2150(cm 2). 答:这两个长方形的面积分别为 1620cm2 和 150cm2.3.解:设两个加数分别为 x、y.根据题意,得 解得所以原来的两个加数分别为 230 和 42.4.解:设 2007 年初一年级秋季招生人数为 x,高一年级招生人数为 y.根据题意得解得答:2007 年初一年级秋季招生人数为 480 人,高一年级招生人数为 125 人.六、反思总结努力+勤奋+信心=成功 戴氏教育集团 25当堂过手训练 (快练 5 分钟,稳准建奇功)1. 甲、乙两人分别从相距 30 千米的 A、B 两地
39、同时相向而行,经过 3 小时后相距 3 千米,再经过 2 小时,甲到 B 地所剩路程是乙到 A 地所剩路程的 2 倍,求甲、乙两人的速度.2. 2. 小华不小心将墨水溅在同桌小丽的作业本上,结果二元一次方程组 中第一个方程 y 的系数和第二个方程 x 的系数看不到了,现在已知小丽的结果是你能由此求出原来的方程组吗?3. 若 是关于 x,y 的二元一次方程 3x-y+a=0 的一个解,求 a 的值.4.已知方程组其中正确的说法是( )A只有(1) 、 (3)是二元一次方程组;B 只有(1) 、 (4)是二元一次方程组;C 只有(2) 、 (3)是二元一次方程组;D只有(2)不是二元一次方程组答案
40、1.解: 设甲、乙的速度分别为 x 千米/时和 y 千米 /时.第一种情况:甲、乙两人相遇前还相距 3 千米.根据题意,得努力+勤奋+信心=成功 戴氏教育集团 26第二种情况:甲、乙两人是相遇后相距 3 千米.根据题意,得答:甲、乙的速度分别为 4 千米/时和 5 千米/时;或甲、乙的速度分别为 千米/时和 千米/时.2.解:设第一个方程中 y 的系数为 a,第二个方程的 x 系数为 b.则原方程组可写成努力+勤奋+信心=成功 戴氏教育集团 273.解:既然 是关于 x、y 的二元一次方程 3xya0 的一个解,那么我们把代入二元一次方程 3xya 0 得到 32a0,解得 a1.4.解:二元一次方程组是由两个以上一次方程组成并且只含有两个未知数的方程组,所以其中方程可以是一元一次方程,并且方程组中方程的个数可以超过两个本题中的(1) 、 (3) 、 (4)都是二元一次方程组,只有(2)不是所以选 D.