1、 中国领先的个性化教育品牌精锐教育网站:www.1smart.org - 1 - 精锐教育 考试研究院精锐教育学科教师辅导讲义年 级:初三 辅导科目:数 课时数:3课 题 二次函数的顶点和对称轴教学目的 1、 训练二次函数的顶点坐标公式,顶点坐标的意义和性质2、 训练二次函数的对称轴的公式,对称轴的意义和性质教学内容一、二次函数的顶点1、二次函数的顶点的意义:(1)顶点横坐标为对称轴,通过顶点横坐标可以得知对称轴(2)顶点纵坐标为函数的最值,可以得知整个函数的取值范围(3)通过顶点横坐标可以得出 a 与 b 之间的关系,可以把 a,b 进行代换。例如:顶点坐标为(2,3) ,隐含意义为,就有
2、,通过这个关系我们可以用 替换 babx44(4)通过顶点纵坐标可以得出 a,b,c 之间的关系。(5)顶点坐标在二次函数的图像上,故可以将它代入解析式中,得到 a,b,c 系数间的一个等式2、顶点坐标公式 必须背熟牢记。)4,2(2a3、在求二次函数的顶点坐标时,有两种方法,一是顶点公式,二是配方法。根据需要灵活选用。当 a 和 b 比较简单时,一般采用配方法可以更快得到顶点坐标;当 a 和 b 比较复杂时,一般采用公式法可以更快得到顶点坐标4、熟记常见的各种类型的二次函数的顶点:函数类型 2axycaxy2 khxay2)( cbxay2顶点 )0,( ),0( , )4,(练习:1、二次
3、函数 (a0)图象的顶点坐标为 .cbxay22、y=-3x 2-5 开口方向为_, 对称轴为_,顶点坐标为 _3、y=2(x-1) 2+2 开口方向为_,对称轴为_,顶点坐标为_4、配方法求抛物线 y=3x2-6x+11 的对称轴和顶点坐标中国领先的个性化教育品牌精锐教育网站:www.1smart.org - 2 - 精锐教育 考试研究院5、抛物线 y=- x2-3x+ 的开口方向为 _,顶点坐标是_,对称轴是_,当 x=_时,有最1_值是_。6、写出下列抛物线的开口方向、顶点坐标、对称轴,灵活选用公式,或配方法(1) (2) 4)2(xy xy42(3) (4) 412xy 421xy7、
4、二次函数 的顶点为(2,3) ,cbxay2(1)求代数式 的值4(2)求 的值b(3)求二次函数图像的对称轴(4)若 a0,请证明:抛物线 与 x 轴必有两个不同的交点。cbaxy28、二次函数 y= - x2+bx+c 的图象最高点为(-1,-3) ,求抛物线与 y 轴交点坐标。中国领先的个性化教育品牌精锐教育网站:www.1smart.org - 3 - 精锐教育 考试研究院9、二次函数 y=x2-2x+c 的顶点在直线 y=-2x+1 上,求抛物线与 y 轴的交点。10、二次函数 y=mx2+2x+m-4m2 的图象过原点,求抛物线顶点坐标。11、抛物线 y=x2+bx+16 的顶点在
5、 x 轴上,求 b 。12、二次函数 (a0 )的顶点坐标为(1,-1) ,下列说法正确的是( )cbxay2(1)二次函数有最小值,最小值为-1(2)二次函数有最小值,最小值为 1(3)二次函数有最大值,最大值为-1(4)二次函数有最大值,最大值为 113、抛物线 的顶点坐标为(1,3) ,则 b ,c .cbxy214、若抛物线 yax 26x 经过点(2,0) ,则抛物线顶点到坐标原点的距离为( ) A. B. C. D.130151415、已知抛物线 yx 2(m1)x 的顶点的横坐标是 2,则 m 的值是_.416、已知二次函数 ,当 a 时,该函数 的最小值为?3ax y17、已知
6、二次函数 的最小值为,那么 。my6218、已知抛物线 ,8x(1)求证:该抛物线与 x 轴一定有两个交点;中国领先的个性化教育品牌精锐教育网站:www.1smart.org - 4 - 精锐教育 考试研究院(2)若该抛物线与 x 轴的两个交点为 A、B,且它的顶点为 P,求ABP 的面积。二、二次函数的对称轴1、对称轴的意义:(1)对称轴即代表顶点的横坐标,通过对称轴可以知道顶点的横坐标(2)通过对称轴可以知道 a 和 b 之间的关系,同(一)中顶点横坐标的作用(3)对称轴是一条直线,函数图像与这条直线必有一个交点,交点就是顶点。(4)函数图像关于对称轴对称,意味着在对称轴两侧对称位置上的函
7、数图像上的点函数值相等,横坐标到对称轴的距离相等。2、对称轴公式: 必须牢记,格式要写对abx23、注意 和 的对称轴是 Y 轴,也就是直线2yc0x4、对称轴一般由公式法得到要方便,配方法得到稍微要麻烦些。练习:1、若二次函数 ,当 x 取 , ( )时,函数值相等,则当 x 取 + 时,函数值为( )(A)a+c (B)a-c (C)-c (D)c2、抛物线 的一部分如图所示,该抛物线在 轴右2)1(xay y侧部分与 轴交点的坐标是(A) ( ,0) (B) (1,0) (C) (2,0) (D) (3,0)3、已知抛物线 2()()yaxh与 x轴交于 1()(AB, , , 两点,则
8、线段 AB的长度为( ) 1 3 44、抛物线 的部分图象如图所示,若 ,则的取cbxy2 0y值范围是( ) A. B. 113xC. 或 D. 或xyO x-1-2 1 2-3 3-112-2y1 13O x中国领先的个性化教育品牌精锐教育网站:www.1smart.org - 5 - 精锐教育 考试研究院5、二次函数 的图象上有两点(3,8) 和(5,8),则此拋物线的对称轴是( ) cbxy2A 4 B. 3 C. 5 D. 1。xxx6、图,抛物线 的对称轴是直线 ,且经过点 (3,0) ,则 的值为 )0(2aPcbaA. 0 B. 1 C. 1 D. 2 y1 33OxP17、知(-2,y 1),(-1,y2),(3,y3)是二次函数 y=x2-4x+m 上的点,则 y1,y2,y3从小到大用 “”排列是 .8、二次函数 ( ,且 ,(-2,y 1),(-1,y2),(3,y3)是二次函数上的三个点,比较cbxay)0aaby1,y2,y3的大小.