收藏 分享(赏)

菲涅耳公式 折反射定律.doc

上传人:weiwoduzun 文档编号:2822800 上传时间:2018-09-28 格式:DOC 页数:11 大小:483.01KB
下载 相关 举报
菲涅耳公式 折反射定律.doc_第1页
第1页 / 共11页
菲涅耳公式 折反射定律.doc_第2页
第2页 / 共11页
菲涅耳公式 折反射定律.doc_第3页
第3页 / 共11页
菲涅耳公式 折反射定律.doc_第4页
第4页 / 共11页
菲涅耳公式 折反射定律.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、Chapter 1 理论基础1.1 介质中的 Maxwells equations 及物质方程微分形式(1-1)=tJ+=0BEDHBA传导电流密度 的单位为安培/米 2(A/m2),自由电荷密度 的单位为库仑/ 米 2(C/m2)。同时J 有电磁场对材料介质作用的关系式,即物质方程(或称本构方程)(1-2)0=()JDEPBHM麦克斯韦方程组及物质方程描写了整个电磁场空间及全时间过程中电磁场的分布及变化情况。因此,所有关于电磁波的产生及传播问题,均可归结到在给定的初始条件和边界条件下求解麦克斯韦方程组的问题,这也正是用以解决光波在各种介质、各种边界条件下传播问题的关键及核心。1.2 积分形式

2、及边界条件由于两介质分界面上在某些情况下场矢量 、 、 、 发生跃变,因此这些量的导数EDBH往往不连续。这时不能在界面上直接应用微分形式的 Maxwells equations,而必须由其积分形式出发导出界面上的边界条件。积分形式(1-3)0LSSdElBtHIDQBdAAA得边界条件为(1-4) 2121()0()nEHDB式(1-4)的具体解释依次如下(具体过程详见光学电磁理论P20):(1 )电场强度矢量 的切向分量连续, 为界面的法向分量。En(2 ) 为界面上的面传导电流的线密度。当界面上无传导电流时, =0,此时 的切向 H分量连续。比如在绝缘介质表面无自由电荷和传导电流。(3

3、) 为界面上的自由电荷面密度。(4 )磁感应强度矢量 的法向分量在界面上连续。BChapter 2 电磁波在分层介质中的传播2.1 反射定律和折射定律光由一种介质入射到另一种介质时,在界面上将产生反射和折射。现假设二介质为均匀、透明、各向同性介质,分界面为无穷大的平面,入社、反射和折射光均为平面光波,其电场表达式为入射波 0exp()iiiiEtkrA反射波 rr折射波 0()tttti界面两侧的总电场为: 1002exp()exp()iriiirrttttEkEitkr 由电场的边界条件 ,有21n0 0 0exp()exp()exp()iii rr tttntkrnitknEikr欲使上式

4、对任意的时间 t 和界面上 均成立,则必然有: (1-irt5)(1-6)irtkk可见,时间频率 是入射电磁波或光波的固有特性,它不因媒质而异,也不会因折射或反射而变化。(1-7)()0ritik由于 可以在界面内选取不同方向,上式实际上意味着矢量 和 均与 ()rik()tik界面的法线 平行,由此可以推知, 、 、 与 共面,该平面称为入射面。由此可nikrtn得出结论:反射波和折射波均在入射面内。上式是矢量形式的折、反射定律。将上式写成标量形式,并约掉共同的位置量,可得(1-8)cos()cos()cos()222iirrttkkk又由于 , , ,得1/in1/r /tn(1-9)1

5、2()siirt反 射 角 等 于 入 射 角( 折 射 定 律 )2.2 菲涅耳公式折、反射定律给出了反射波、折射波和入射波传播方向之间的关系。而反射波、折射波和入射波在振幅和位相之间的定量关系由 Fresnel 公式来描述。 电场 是矢量,可将其分解为一对正交的电场分量,一个振动方向垂直于入射面,称为sE分量,另外一个振动方向在(或者说平行于)入射面,称为p 分量。首先研究入射波仅含s分量和仅含p分量这两种特殊情况。当两种分量同时存在时,则只要分别先计算由单个分量成分的折射、反射电场;然后根据矢量叠加原理进行矢量相加即可得到结果。 (1 )单独存在 s 分量的情形首先规定:电场和磁场的 s

6、 分量垂直于纸面,向外为正,向内为负。在界面上电场切向分量连续: 21()0nE另外由式(1-5) 、 (1-6) ,可得 (2-1)00isrsts在界面上磁场的切向分量连续: 21()0nH注意 ,如图所示。所以同理有kE(2-000coscscosipirprtptH2)非磁性各向同性介质中 、 的数值之间的关系:0BnHEc那么式(2-1)整理为(2-101020coscoscosiirrttnnnE3)联立式(2-1) (2-3)可得012scorsitsiEn012ssts isiitt(2 )单独存在 p 分量的情形首先规定:p 分量按照其在界面上的投影方向,向右为正,向左为负。

7、 根据 、 的边界条件得:EH00isrsts0coccosipiprtptE再利用 、 的数值关系以及正交性,得到E021scorpitin012sstpii ittEn综上所述,S 波及 P 波的反射系数和透射系数的表达式为:01221012021cosscosrsitsirpititsiiittpiiitEnnEsin()a()cosin2si()s()titptsitptir上面左边的式子就是著名的 Fresnel 公式。利用折射定律,Fresnel 公式还可以写成右边的形式。 2.3 反射波和透射波的性质2.3.1 n1n2 的情况这种情形即由光密媒质入射到光疏媒质的情形。由折射定律

8、可知, ti把 所对应的入射角称为全反射临界角,用 表示。即 。90t c21sinc因此分 和 两种情况来讨论。 icic(1 )当 时i此时 ,可以直接用 Fresnel 公式来讨论反射波和折射波的性质,分析方法和 n1n2 还是 n1n2 的情形,布儒斯特定律都成立。ts 和 tp 均大于 1,且随着 的增大而增大,但是这不意味着透射率 T 大于 1 以及 T 必然随i的增大而增大。 i221cos|tssinT221|cstppi(2 )当 时i因为全反射临界角满足 。由该式可见,当 时,会出现 的21sincic21sin现象,这显然是不合理的。此时折射定律 不再成立。但是为了能够将

9、2sint菲涅耳公式用于全反射的情况,在形式上仍然要利用关系式 。12sinsit由于 在实数范围内不存在,可以将有关参量扩展到复数领域。 而 始终是实参量,为t i此应将 写成如下的虚数形式: cost22211insi(sin)t tt有关 取虚数的物理意义及其取正号的原因,留在后面说明。将上式代入菲涅耳公式,2cos得到复反射系数 2in|exp()cosiisrsr i 22cosin|exp()iis rnr i 并且有|1spr2p2sintantacorirs式中, ,是二介质的相对折射率; 、 为反射光与入射光的 s 分量、p21/ |sr|p分量光场振幅大小之比。 、 为全反

10、射时,反射光中的 s 分量、p 分量光场相对入射rsp光的相位变化。由上式可见,发生全反射时,反射光强等于入射光强,而反射光的相位变化较复杂。他们之间的相位差由下式决定: 2pcosin2artirs 因此,在 n 一定的情况下,适当地控制入射角,即可改变相位差,从而改变反射光的偏振状态。比如菲涅耳棱镜的原理。当光由光密介质射向光疏介质,并在界面上发生全反射时,投射光强为零。这就有一个问题:此时在光疏介质中有无光场呢?当把 ts、 tp 的 Fresnel 公式推广到复数域进行计算,将会发现 ts、t p 都不等于零,亦即光疏媒质内有折射光波。在发生全反射时,光波场将透入到第二个介质很薄的一层

11、(约为光波波长)范围内,这个波叫倏逝波。现假设介质界面为 xOy 平面,入射面为 xOz 平面,则在一般情况下可将透射波场表示为0 0ex()exp(sincos)tttttttttEikrEikxzA上式可改写为 210p(sin(i)ttttttiz21 10 2exi)expsin)ttt ttEkzikx这是一个沿着 z 方向振幅衰减,沿着界面 x 方向传播的非均匀波,也就是全反射的倏逝波。由此可以说明前面讨论的正确性:只有 取虚数形式,并且取正号,才可以得到客观cost上存在的倏逝波。倏逝波在入射波刚刚达到界面之初需要花一定的能量以建立倏逝波电磁场外,当达到稳定状态之后,不需要再向它

12、提供能量,倏逝波只沿着界面处传播,不进入第二媒质内部。因而全反射时 Rs=1、t s0 和 Rp=1、t p0 并不违反能量守恒定律。 具体性质参看物理光学与应用光学P382.4 Stocks 倒逆关系Stokes reversible relation 可 以 导 出 不 同 介 质 两 侧 折 射 系 数 、 反 射 系 数 的 关 系 。如上左图所示,假设入射光束的振幅为 A,相应反射光束与折射光束为 Ar,At。再设一束振幅为 Ar 的光束逆向传播(上右图中蓝色光束 Ar)相应反射和折射分别是 Arr、Art ;再设一束振幅为 t 的光束逆向传播(上右图中橙色光束 At) ,相应反射和折射分别为 A t r、At t。由于最初的反射光行波和折射光行波 r、t 正逆抵消。则另外第二、第三象限的光束也抵消,得到斯托克斯倒逆关系,即:整理后,得A0rt( 第 二 象 限 )( 第 三 象 限 ) 210trr、t 为从 n1 介质到 n2 介质入射时的反射和折射系数; r、t 为从 n2 到 n1 介质入射时的反射和折射系数。

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报