1、仪器分析教案绪 论本章是仪器分析课程的介绍。主要是让学生了解化学分析与仪器分析的联系与区别,仪器分析方法的分类和它的发展情况,介绍仪器定量分析方法的评价指标。重点在于对分析方法进行评价的几项指标。学时计划为 1 学时。内容提要:仪器分析与化学分析的区别与联系、仪器分析方法的分类及发展趋势。重点难点:仪器分析方法的分类授课方式:讲授一、仪器分析和化学分析化学分析定义仪器分析定义两者的区别在于:检测能力样品的需求量分析效率使用的广泛性精确度二、仪器分析方法的分类根据测量原理和信号特点,仪器分析方法大致分为四大类光学分析法以电磁辐射为测量信号的分析方法,包括光谱法和非光谱法 的 变 化折 射 、 衍
2、 射 等 基 本 性 质物 质 之 后 , 引 起 反 射 、非 光 谱 法 : 电 磁 波 作 用 拉 曼 散 射磁 辐 射 的 吸 收 、 发 射 或光 谱 法 : 依 据 物 质 对 电电化学分析法依据物质在溶液中的电化学性质而建立的分析方法色谱法以物质在两相间(流动相和固定相)中分配比的差异而进行分离和分析。其它仪器分析方法包括质谱法、热分析法、放射分析等 。三、仪器分析的发展概述发展趋势计算机技术在仪器分析中的广泛应用,实现了仪器操作和数据处理自动化。不同方法联用提高仪器分析的功能。各学科的互相渗透第一章 光学分析法基础本章是学习光学分析法之前应具备的基础知识。主要介绍光的波粒二象性
3、,原子光谱和分子光谱基础知识。在介绍电磁辐射基础上重点讲解能级跃迁图。本章计划学时为 1 学时。第一节 电磁辐射的性质一、电磁辐射的性质电磁辐射具有波动性和粒子性。波动性电磁辐射是在空间传播着的交变电磁场,可以用频率()、波长()和波数()等波参数表征。掌握频、波长、波数的定义及之间的关系。微粒性普朗克方程 E (11)ch该方程将电磁辐射的波动性和微粒性联系起来,二、电磁波谱按照波长的大小顺序排列可得到电磁波谱,不同的波长属不同的波谱区,对应有不同的光子能量和不同的能级跃迁。能用于光学分析的是中能辐射区,包括紫外、可见光区和红外区。第四节 原子光谱和分子光谱 内容提要: 原子光谱项、原子光谱
4、能收图及原子光谱选择定则,分子光谱能收分子吸收光谱和分子发光光谱重点、难点:原子光谱项、分子光谱能及跃迁图授课方式: 讲授一、原子光谱原子光谱产生于原子外层电子能级的跃迁核外电子的运动状态原子接到电子的运动状态可以用主量数、角量子数 2、磁量子数和自旋量子数来描述。光谱项原子的能量状态需要用 n.L.S.J 四个量子数为参数的光谱项来表征。N 为主量子数,L总轨道角量子数,S总自旋量子数,J内量子数原子能级光谱项用 表示Ln1s2光谱支项用 表示J原子能级图把原子可能存在的光谱项及能级跃迁用图解的方式表示出来就得到原子能级图。谱线波长取决于两能级的能量差,不同能级之间跃迁产生的原子光谱是波长确
5、定,相互分隔的谱线,所以原子光谱是线状光谱。光谱选择定则只有符合光谱选择定则的跃迁才是允许的: , , ,1L0sJ1原子光谱原子发射光谱:处于激发态原子不稳定,当返回基态或较低能态时而发射出特征谱线。原子吸收光谱:当光辐射通过基态原子蒸气时,原子蒸气选择性地吸收一定频率的光辐射,原子基态跃迁到较高能态。原子荧光光谱:气态原子吸收光辐射后,由基态跃迁到激发态,再通过辐射跃回到基态或较低的能态产生的二次光辐射。三、分子光谱分子光谱分子光谱产生于分子能级的跃迁,分子能级中的电子能级,分子的振动能级以及转动能级。分子吸收光谱和分子发光光谱。分子吸收光谱:分子对辐射的选择性吸收由基态或较低能级跃迁到较
6、高能级产生的分子光谱。如紫外可见吸收光谱,红外吸收光谱。分子发光光谱化 学 发 光电 致 发 光光 致 发 光 : 荧 光 、 磷 光拉曼光谱:入射光子与溶液中试样分子间的非弹性碰撞,发生能量交换,产生与入射光频率不同的散射光。第二章 原子发射光谱分析法本章地位: 原子发射光谱分析法在发现新元素和推动原子结构理论的建立方面曾做出过重要贡献,在各种无机材料的定性、半定量及定量分析方面也曾发挥过重要作用。近 20 年来,由于新型光源、色散仪和检测技术的飞速发展,原子发射光谱分析法得到更广泛的应用。学习中应使同学们了解本章知识理论及应用在光分析法中的重要地位。本章内容: 本章主要讲述原子发射光谱法的
7、基本原理、基本仪器以及光谱定性、半定量及定量分析的方法和应用。讲解思路: 首先介绍原子发射光谱的产生、元素的原子和离子所产生的原子线和离子线都是该元素的特征光谱。谱线的波长 和强度 I 是本法对物质进行定性分析和定量分析的依据。之后详细介绍原子产生特征光谱的机理以及影响谱线强度的定义这是本章的重点内容。介绍原子发射光谱仪器时首先介绍三部分框架,再介绍每部分的具体构成和重点元件,如 ICP 光源和光栅色散原理。最后介绍原子发射光谱的定性、半定量及定量分析方法,其中摄谱法中的乳剂特性曲线,及定量分析中的内标法原理是本章的重难点。课时分配:6 学时。第一节 基本原理内容提要: 主要介绍原子发生光谱的
8、产生,物质受到外界能量的作用,基态原子被激发到激发态,激发态很不稳定,在 108 时间内,返回到基态,所受能量以光辐射形式释放产生原子发射光谱。= 元素的特征波长 E 2、E 1分别为高能级和低能级hCEc12能量谱线的强度影响谱线强度的因素,从上式可知主要有 4 种因素一一进行分析。重点: 谱线的波长和强度是两个重要的参数。授课方式:讲授、挂图。第二节 分析仪器内容提要: 原子发射光谱法所用仪器通常包括激发光源、分光系统、及检测系统三部分。激发光源主要有直流电弧、低压交流电弧、高压电容火花及新型光源 ICP。各种光源有其不同的性能(激发温度、蒸发温度、热性质、强度、稳定性等)可供各类试样选择
9、。相比之下,ICP 由于热稳定性好,基体效应小,检出限低,线性范围宽而被公认为最具活力、前途广阔的激发光源。分光系统中主要是分光元件,现代仪器多用光栅作分光元件,需介绍光栅分光原理、分光性能(色散率、分辨率)检测系统有摄谱法、光电直读法,分别介绍各自的原理和性能。重、难点:ICP 光源的结构、原理、分析性能是重点,平面反射闪耀光栅的分光原理及结论也较重要。摄谱法中的感光板的乳剂特性曲线及光电光谱法中电压与谱线强度的关系较难理解,详细介绍。授课方式:讲授、挂图。第三节 分析方法内容提要: 在原子光谱分析中,根据谱线的波长进行定性分析,根据谱线的强度进行定量分析。主要介绍定性及半定量分析方法。首先
10、介绍光谱定量分析的基本原理,导出定量分析基本关系式 I=aC,取对数lgI=blgC+lga这是光谱定量分析的基本公式。此种方法为绝对强度法,实验中不可能保证a 为一常数,所以一般分析时不用谱线的绝对强度而用相对强度。引出内标法定量分析原理。内标法:在同一试样中在 分 析 线 对基 体 元 素 中 选 一 内 标 线 线被 分 析 元 素 中 选 一 分 析 测定分析线对的强度比 RlgC 作校正曲线,所求的元素含量消除了实验条件的影响。内标法的使用必须注意分析线对的正确选择。重难点:(1)内标法定量分析原理(2)摄谱法:分析线对的黑度差 S 与试样中被测元素含量的对数值 lgC 成线性关系S
11、rblgC+rlgA(3)光电直读光谱法:测量分析线对积分电容器的充电电压就可直接求出被测元素含量。AlgCbUlg21授课方式:讲授、挂图第三章 原子吸收与原子荧光光谱法本章地位: 本章内容在仪器分析课程中是较为重要的一章内容,由于该分析方法具有灵敏度高、抗干扰能力强、精密度高、选择性好、仪器简单、操作方便等特点。自 20 世纪 60 年代以后,原子吸收光谱分析法得到迅速发展,应用极为普及,所以有关本方法的理论课程也非常重要。本章内容:主要介绍原子吸收光谱法的基本原理、基本仪器装置、定量分析方法,并简介原子荧光光谱法。讲解思路: 在本章之前已分别介绍了紫外可见吸收光谱法、红外吸收光谱法、原子
12、发射光谱法等多种光谱法,所以需先将原子吸收光谱法与其它光谱法作大致比较,找出相同点与不同点。再介绍原子吸收光谱法的特点。原子吸收光谱的原理是本章的难点,里面涉及到一些较难的概念,如吸收线的轮廓与变宽、积分吸收测量法、峰值吸收测量法等需重点讲解。原子吸收光谱仪首先介绍框架图,再介绍各部分功能与原理、原子吸收光谱法的干扰虽比发射光谱少但仍存在有时甚至较严重,所以,需介绍干扰效应的类型、本质及消除方法。原子吸收光谱定量分析方法中,灵敏度和检测限两项评价指标是难点,应适当举例介绍。学时分配:5 学时第一节 原子吸收光谱法的基本原理内容提要: 首先介绍原子吸收线的产生。当基态原子吸收了一定辐射能后,基态
13、原子被激发跃迁到不同的较高能态,产生不同的原子吸收线。原子吸收光谱分析法是基于元素的基态原子蒸气对同种元素的原子特征谱线的共振吸收作用来进行定量分析的。无论是原子发射线还是原子吸收线都不是一条严格的几何线,谱线有一定的轮廓,在一定条件影响下,谱线会变宽。介绍谱线变宽因素。吸收线变宽主要受 D和 L影响,锐线光源发射线变宽受 D和自吸变宽的影响。在分析中,谱线的变宽往往会导致原子吸收分析的灵敏度下降,所以要求控制外界条件影响。对发射线尤其要保证是锐线光源,以使吸收完全。重、难点:(1)基 态 原 子 数 与 原 子 化 温 度 服 从 波 兹 曼 公 式 关 键 在 于 No 的 产 生KTEj
14、ePoNj(2)积分吸收与 No 的关系 ofmCedk2v(3)峰值吸收与被测定元素含量的关系vodkb2KKNo峰值测量可依据 LCKAeIIlgALvvo 授课方式:讲授、挂图第二节 原子吸收光谱法的仪器装置内容提要: 原子吸收光谱仪主要由锐线光源、原子化器、分光系统、检测系统和电源同步调制系统五部分组成。产生原理(1)光源空心阴极灯产生锐线光源 影响因素特点(2)原子化器 原 子 化 、 除 残 。 燥 、 灰 化 、 电 源 。 测 定 过 程 : 干无 火 焰 : 石 墨 管 、 炉 体 、 燃 烧 器 、 火 焰火 焰 : 喷 雾 器 、 雾 化 室 质尤 其 是 火 焰 的 组
15、 成 和 性 求应 介 绍 对 每 一 部 分 的 要 (3)单色器 狭 缝 宽 度取 决 于光 强 度分 辨 率 在 AAS 中以单色器的通带表示狭缝宽度。通带光线通过出射狭缝的谱带宽度。(4)检测系统:包括光电倍增长、检波放大器、读数装置注意介绍:放大器采用和空心阴极灯同频率的脉冲或方波调制光源,以避免火焰发射产生的直流信号对测定的干扰。重点: 光谱通带的概念和作用授课方式:讲授、挂图第三节 原子吸收光谱定量分析内容提要: 原子吸收光谱定量分析方法有标准曲线法和标准加入法。重、难点: 元素的特征浓度 Cc、特征质量(m c)和检出限(D)是评价原子吸收光谱分析仪器和分析方法的重要指标。%)
16、1/mLg(A04.Csc /.vsc)g3D1s(A(授课方式:讲授第四节 原子荧光光谱法指导学生了解原子荧光光谱法的基本原理、仪器装置以及定量分析方法。第四章 紫外、可见吸收与分子荧光光谱法第一节 紫外、可见吸收光谱法概述内容提要:介绍紫外可见吸收光谱法的基本概念。紫外可见吸收光谱法是根据溶液中物质的分子对紫外和可见光谱区辐射能的吸收来研究物质的组成和结构的方法。也称作紫外和可见吸收光度法,它包括比色分析和紫外可见分光光度法。第二节 有机物与无机物的紫外、可见吸收光谱内容提要:不同物质具有不同的分子结构,对不同波长的光会产生选择性吸收,因而具有不同的吸收光谱。无机化合物和有机化合物吸收光谱
17、的产生本质上是相同的,都是外层电子跃迁的结果,但二者在电子跃迁类型上有一定区别。有 机 化 合 物 吸 收 可 见 光 或 紫 外 光 , 、 和 n 电 子 就 跃 迁 到 高 能 态 , 可 能 产 生 的跃 迁 有 *、 n *、 *和 n *。 各 种 跃 迁 所 需 要 的 能 量 或 吸 收 波 长与 有 机 化 合 物 的 基 团 、 结 构 有 密 切 关 系 , 根 据 此 原 理 进 行 有 机 化 合 物 的 定 性 和 结构 分 析。无机络合物吸收带主要是由电荷转移跃迁和配位场跃迁而产生的。电荷转移跃迁的摩尔吸收系数很大,根据朗伯比尔定律,可以建立这些络合物的定量分析方
18、法。重、难点:分子的电子能级和跃迁生色团的共轭作用d-d 配位场跃迁金属离子影响下的配位体 *跃迁。授课方式:讲授,使用挂图。第三节 紫外、可见吸收光谱法的应用内容提要: 紫外可见吸收光谱法用于有机化合物的定性、定量和结构分析。由于有机化合物的紫外可见吸收光谱比较简单、特征性不强,吸收强度不高,因此应用有一定的局限性。但它能够帮助推断未知物的结构骨架、配合红外光谱法、核磁共振波谱法和质谱法等进行定性和结构分析,它是一种有用的辅助手段。重点: 化合物的鉴定、结构分析事例。有机化合物的鉴定,一般采用光谱比较法。将未知纯化合物的吸收光谱特征,如吸收峰的数目、位置、相对强度以及吸收峰的形状与已知标准物
19、的吸收光谱进行比较,以此推断未知化合物的骨架。但大多数有机化合物的紫外可见光谱比较简单,特征性不明显,而且很多生色团的吸收峰几乎不受分子中其它非吸收基团的影响,因此,仅利用紫外光谱数据来鉴别未知化合物有较大局限性。结构分析:紫外吸收光谱虽然不能对一种化合物作出准确鉴定,但对化合物中官能团和共轭体系的推测与确定却非常有效。难点: 催化动力学光度法原理。所谓催化动力学分析法是指通过测量反应速率来进行定量分析的方法。许多化学反应在催化剂存在下,可以加快反应速率,而催化反应速率在一定范围内与催化剂浓度成比例关系,因此以光度法检测催化反应速率就可以实现对催化剂浓度的测定。但影响该法准确度的因素很多,操作
20、严格,准确测定难度较大。授课方式:讲授,配合实验事例。第三节 分子荧光光谱法内容提要:荧光产生原理,荧光效率及影响因素,荧光强度与溶液浓度的关系,荧光仪器及荧光的分析应用。重点、难点:荧光的产生机理授课方式: 讲授一、概述根据物质的分子荧光光谱进行定性,以荧光强度进行定量公析。荧光分析法的最大优点是灵敏度高,选择性也较好,应用范围广。二、基本原理分子荧光的产生处于各激发态不同振动能级上分子,通过无辐射跃迁,释放一部分能量跃回到第一激发态的最低振动能级上,再以辐射跃迁形式回到基态的各振动能极上,产生分子荧光。荧光效率及其影响因素荧光效率荧光效率定义为发荧光的分子数目与激发态分子总的比值即荧光效率
21、( ) (41)f激 发 态 分 子 总 数发 荧 光 的 分 子 数若以各种跃迁的速率常数来表示,则 (42)fifKK f为荧光发射过程中的速率常数 非辐射跃迁的速率常数之和iK荧光与分子结构的关系要具有能够吸收紫外可见光的分子结构如共轮体系, 电子的离域性越强,越易被激发而产生荧光。分子的刚性平面结构有利于荧光的产生环境因素对荧光的影响溶剂的极性增加对激发态产生更大的稳定作用,会使荧光强度增强温度也影响到荧光强度对大多数荧光物质,温度升高,使非辐射跃迁几率增大,荧光效率降低。溶液的 pH 值影响到荧光物质的存在,也影响荧光效率。荧光强度与溶液浓度的关系荧光强度 )I(I0faff 由于
22、A Ilg0 AI (43) !3).2(!).(3.2I)I1(0fA0f若溶液很稀 A0.05,则 kbcI3.2I.I0f0ff当条件一定时 (45)KCf上式为荧光定量分析的基本关系式荧光猝天:荧光物质分子与溶剂分子或溶质分子之间所发生的导致荧光强度下降的物理或化学作用过程。三、荧光分析仪器由光源、单色器、液池、检测器和记录系统五部分组成。光源:一般由高压汞灯或氙弧灯提供。单色器:起分光作用,一般为光栅。检测器:采用光电倍增管。四、荧光分析法的应用无机化合物分析大多数无机化合物不产生荧光,只有与一些有机化合物形成有荧光的络合物才能对其进行测定。有机化合物的分析结一些芳香族化合物基因,具
23、有较强的荧光,可以直接进行分析测定,因此在生物化学、医药、环境、食品等领域有广泛的应用。第五章 电分析化学导论本章是电分析化学的基础知识,主要介绍电分析化学的分类、化学电池、电极电位与液体接界电位,电极的种类名称,膜电极等有关电分析化学的基本概念和基础知识。本章的计划学时数为 2 学时。第一节 电分析化学方法分类、特点极应用根据所量的电参量的不同,电分析化学方法可分为三类:第一类:在某些特定条件下,通过待试液的浓度与化学电池中某些电参量的关系进行定量分析,如电导、电位、库仑极谱及伏安分析第二类:通过某一电参量的变化来指示终点的电容量分析好电位滴定第三类:通过电极反应把被测物质,转变为金属或其它
24、形式的搓化物,用重量法测定基会量。第二节 电分析化学中某些基本术语与概念内容提要: 原电池、电解池、电池的表示方法重点、难点:电池的表示方法授课方式: 讲授一、原电池能自发的将本身的化学能变成电能,这种化学电池称为原电池。以铜锌原电池为例锌电极、负极(阳极): 氧化反应e2Zn铜电极、正极(阴极): 还原反应uuC二、电解池实现某种电化学反应的能量由外电源供给则这种化学电池称为电解池仍以铜电极和锌电极为例。锌电极、负极(阴极): 还原反应n2nZe铜电极、正极(阳极): 氧化反应Cu应注意:阳极、阴极是对实际发生的反应而言,阳极发生氧化反应,阴极发生还原反应;正极、负极是对电荷的流向而言,电子
25、流出为负极,电子流入为正极。三、电池的表示方法规定:发生氧化反应的一极(阳极)写在左边,发生还原反应的写在右边。电池组成的每一个接界面用单竖线“”隔开,两种溶液通过盐桥连接,用双竖线“”表示。电解质溶液位于两电极之间,并应注明浓度,如有气体应注明压力、温度电池电动势 左右电 池 E1电极电位与液体接界电位内容提要: 电极电位定义、液体接界电位的产生、电极极化的形成重点、难点:液体接界电位的产生授课方式:讲授一、电极电位电极电位的产生是由于金属与溶液交界面发生了电荷交换的结果,在金属与溶液之间产生了一定的电位差,这种电位差就是电极电位。单个电极的电位值目前尚无法测定,它与标准电极组成电池,规定氢
26、标准电极电位为零,测得的电池电动势即为待测电极的电极电位。P t,H2(101325Pa) (a=1)待测电极H二、液体接界电位在不同电解质或浓度不同的同种电解质溶液界面之间,由于离子扩散通过界面的速率不同,在两液体界面之间有微小的电位差产生,这种电位差称为液体接界电位。由于 和 的扩散速度几乎相等,所以在两个溶液界面之间使用盐桥可以减小液接KCl电位。三、极化和过电位极化是指电流通过电极与溶液的界面时,电极电位偏离平衡电位的现象。浓差极化:电解过程中电极表面溶液的浓度与主体溶液存在差别,这种由于浓度差别引起的极化叫浓差极化。减小电流密度,强化机械搅拌可减小浓差极化。电化学极化电化学极化是由于
27、电极反应速率较慢引起的,这种因电极反应迟缓所引起的极化现象称为电化学极化。2 电极种类一、根据电极组成分类根据组成体系和作用机理,可以分成五类::第一类电极由该金属浸入全有该金属离子的溶液组成,如 Ag第二类电极:由金属,该金属的难溶盐的阴离子组成。如 Cl HgCl2第三类电极金属与两种具有共同阴离子的难溶盐组成。如 24242a|O|Hg|零类电极由惰性金属与全有可溶性的氧化和还原物质的溶液组成的电极。如 32tFe,|P膜电极具有敛威膜并能产生膜电位的电极。如各种离子选择性电极二、根据电极所起的作用分类指示电极和工作电极在电化不测量过程中,溶液主体浓度不发生变化的电极称为指示电极。如有较
28、大电流通过,溶液主体浓度发生显蓍变化的电极称为工作电极。参比电极在电化学测量过程中,具有恒定电位的电极称为参比电极。辅助电极或对电极辅助电极(对电极)与工作电极形成通路,它只提供电子传递的场所。极化电极和去极化电极电解过程中,插入试样电极的电位完全随外加电压的变化而变化,这类电极称为极化电极,当电极电位不随外加电压而变化,这类电极称为去极化电极。第六章 电位分析法第一节 离子选择性电极电位法基本原理电位分析法是根据测量到的电极电位、由能斯特方程式求得被测物质的浓度,电位分析法通常分为直接电位法和电位滴定法,本章主要内容如下 1.离子选择性电极的分类及响应机理,2. 离子选择性电极的性能参数,3
29、. 测定离子活(浓)度的方法,4 电位滴定法,要掌握的重点,难点和知识要点是,电位法测定溶液 pH 值的原理,pH 玻璃电极的特性及对溶液 pH 测定的影响,F -选择电极的结构,其响应电位与测定液中氟离子活度之间的关系,膜电极的响应没有绝对的专一性,而只有相对的选择性,在表达电极电位与各组分的浓度关系时可用下述方程式表示:E=k ,直接法校正曲线)akalg(nFRT30.2b/nij/njii 法和标准加入法是离子选择电极的常用定量分析方法,了解这些方法的各自特点,掌握定量分析的操作,电位滴定反应的类型及其指示电极的选择,本章以讲授为主,学时为 5。第二节 离子选择性电极的类型及响应机理本
30、节主要介绍离子选择电极的分类及 pH 玻璃电极的结构、响应机理、特性及 pH 的测定、晶体膜电极主要介绍了 F-电极的结构及 F-电极的电位、测 F-的条件,简介了液膜电极、气敏电极酶电极。本节重点在于 pH 玻璃电极的响应机理,pH 的测定; F-选择电极的结构及其浓度检测。难点在于 pH 膜电位的形成及其公式的推导。本节采用授课方式。一、离子选择性电极的分类酶 电 极 : 如 尿 素 电 极气 敏 电 极 : 如 氨 电 极敏 化 电 极 中 性 载 体 电 极 如 钾 电 极 极负 电 荷 载 体 电 极 如 钙 电 电 极正 电 荷 载 体 电 极 如流 动 载 体 电 极 电 极硬
31、质 电 极 , 如非 晶 体 膜 电 极 极搀 入 硅 橡 胶 中 制 成 硫 电非 均 相 膜 : 如 制 成 氯 电 极混 晶 电 极制 成单 晶均 相 膜晶 体 膜 电 极原 电 极离 子 选 择 性 电 极 323NOpHSAgClFLa二、玻璃电极(一)玻璃电极的构造它包括 pH 敏感膜、内参比电极(AgCl/Ag)内参比液带屏蔽的导线组成,玻璃电极的核心部分是玻璃敏感膜。(二)玻璃电极的响应原理纯的 SiO2制成的石英玻璃由于没有可供离子交换用的电荷质点,不能完成传导电荷的任务,因此石英玻璃对氢离子没有响应。然而在石英玻璃中加入碱金属的氧化物(如Na2O) ,将引起硅氧键断裂形成荷
32、电的硅氧交换点位,当玻璃电极浸泡在水中,溶液中的氢离子可进入玻璃膜与钠离子交换而占据钠离子的点位,交换反应为:H Na Gl- Na+H+Gl-此交换反应的平衡常数很大,由于氢离子取代了钠离子的点位,玻璃膜表面形成了一个类似硅酸结构( )的水化胶层。图 1 显示了玻璃膜表面与内部离子的分布情况。OHSi内部溶液表面点位被 H+交换水化胶层10 -4mm点位为 H+和Na+干玻璃层0.1 -4mm点位为 Na+所占有水化胶层0.1 -4mm点位为 H和 Na+所占有外部溶液表向点位被 H交换图 1 玻璃膜中离子分布图(61)外外外外 Halg059.kE(62)内内内内 Hl.式中, 为膜外和膜
33、内溶液氢离子活度。内外 、Ha为外水化胶层和内水化胶层中的氢离子活度内外 、 ak 外 、k 内 为玻璃外,内膜性质决定常数。若膜内外表面性质相同,则 k 外 k 内 , 内外 Ha(63)内外内外膜 Halg059.E膜内 参玻 Cl0AgCl/ a59.E内 名于是 (64)内外玻 Hl0gl/ alg059为 常 数和内 ClHa(6-5)外玻 Hg059.kE或 (6-6)p.玻(三)玻璃电报的特性1、不对称电位:如果玻璃膜两侧溶液的 pH 相同,则膜电位应等于零,但实际上仍有一微小的电位差存在,这个电位差称为不对称电位。2、碱差:pH10 或钠离子浓度较高的溶液时,测得的 pH 比实
34、际数值偏低,这种现象称之为碱差(钠差) 。3、酸差:pH1,测得的 pH 值比实际值高。(四)pH 的测定测量装置如图 6-3测量电池如下Ag/AgCl,0.1mol/L HCl|玻璃膜|试液式标准缓冲溶液|KCl(饱和) ,Hg 2Cl2|Hg电动势可用下式计算液 接不 对 称玻电 池 EESC液 接不 对 称膜 Ag/l在一定条件下, 及 可视为常数合并 k液 接不 对 称 、SCEAg/Cl于是上式可写为E 电池 =k-0.059lg (67)Ha或 E 电池 =k+0.059pH (6-8)在实际中,pH x的测定是通过与标准缓冲溶液的 pHs相比较而确定的。若测得标准缓冲溶液 pHs
35、的电动热为 Es,则E s=k+0.059pHs (69)在相同条件下,测得未知溶液(pH x)的电动势为 Es则E x=k+0.059pHx (610)由式(69) ,(6-10)可得pH x=pHs+ (6-11)059.Esx若以 pH 玻璃电极作为正极,饱和甘录电极作负极则(6-12).pHssx三、晶体膜电极(一)F 电极的结构它由内参比电极、内参比溶液、laF 3单晶膜、电极杆屏蔽导线组成,氟电极的核心部分是 laF3单晶膜。(二)F -电极的响应机理若将氟电极浸入待测试液中,由于氟离子的扩散而在电极表面形成双电层产生膜电位,其膜电位公式如下:(613)外内膜 FgalE059.氟
36、电极的电位为 EF=E 内 E 膜 (E 内 内参比电极电位) (614)E 内 和 为定值时,则内F(615)外Fgal059.k(三)F 电极的干扰,主要干扰离子为 OH-laF 3+30H- +3F-3)(OHl使用氟离子选择性电极时,溶液的 pH 应控制在 5-6 之间,离子选择电极定量的依据E= (616)anklg059.其它类型电极对于 Ag 电极 E=k+0.059lg (617)Aga对于 S2 电极 E=k- (618)2sl059.对于 Cu、Pb、Cd 电极E=k (619)2lg059.Ma四、液膜电极液膜电极也称流动载体电极,与玻璃电极不同,其敏感膜不是同体,而是液
37、体,如选择电极其结构如图 65。电极内装有两种溶液,一种是内部溶液(0.1moll -2Ca1(CaCl 2)另一种是具有可交换点位的液体高子交换剂(RO) 2PO2Ca,敏感膜将内参比溶液和试液隔开,这时在每个界面将建立下述平衡(RO) 2PO22Ca2(RO) 2P +Ca2+OCa试 液膜膜电位与试液中 Ca2+的活度有如下关系:E 膜 k+ 2lg059.Ca五、气敏电极气敏电极是一种气体传感器,常用于分析溶解水溶液中的气体。它的作用原理是利用待测气体与电解质溶液发生反应生成一种离子选择性电极响应的离子。由于这种离子的活度(浓度)与溶解的气体量成正比,因此,电极响应直接与试样中气体的活
38、度(浓度)有关,如 CO2CO 2+H2O HC3生成的 H+可用 pH 玻璃电极检测。六、酶电极将生物酶涂布在离子选择性电极的敏感膜上,试液中待测物质受酶的催化发生化学反应产生能为离子选择性电极敏感膜所响应的离子,由此可间接测定试液中物质的含量。如Co(NH 2)2+H2O+H3O 34HCON2脲 酶产物铵离子在铵电极上产生电位的响应,从而间接测定了试样中脲的含量。第三节 离子选择性电极的性能参数本节介绍了离子选择性电极的性能参数、电位选择参数、线性范围和检测限及响应时间。通过这些参数可以估计电极的性能,本节重点在于讲解清楚含干扰离子存在的能斯特方程式。授课采用讲授的方式。一、电位选择系数
39、(一)电位选择系数E=k (620))akalg(nFRT30.2b/nij/njii 式中 I 为被测离子,j 和 k 为干扰离子,a、b 分别是 j 和 k 离子所带的电荷数,a I、a j和ak分别为 I 离子,j 离子和 k 离子的活度,n 为 I 离子的电荷数,k ij和 kik为电位选择系数。K ij表征了共存离子;对响应离子 I 的干扰程度。电位选择系数愈小,电极对被测离子的选择性越好。(二)电位选择系数的测定方法固定干扰法:配制一系列干扰离子 j 浓度相同而被测离子 i 浓度不同的溶液,将欲测的离子选择性电极插入各溶液中,测量相应的电位值然后将测得的电位值作图(E-lga i)
40、 ,可得到如图 67 的曲线,如果 i、j 均为一价阳离子,则在标准曲线直线部分E1=k1+slgaI (621)在水平曲线部分 E 2=k2+slgkij (622)a/nj若 k1=k2,s=s,且 E1=E2 则(623)a/njij二、线性范围和检测限将离子选择性电极的电位(正)对响应离子活度的对数值作图,得到标准曲线(如图68) ,图中 AB 为离子选择性电极响应的线性范围。直线 AB 的斜率即为离子选择性电极的响应斜率,M 所对应的浓度为电极的检测限。三、响应时间从参比电极与离子选择性电极同时接触试液时算起,直到电极电位值达到与稳定值相差 1 mV 所需的时间。第四节 重要的实验条
41、件本节介绍了浓度与活度及测定离子活度的方法、标准曲线法、标准加入法及连续标准加入法,是测定离子浓度(活度)的常用方法。本节重点与难点在一了解活度与浓度及连续标准加入法。采用讲授的方式。一、测量仪器测量误差 仪 表电 极 电 极 10R二、浓度与活度E fiCnFTKainFTll若总离子强度保持相同时,离子活度系数 fi保持不变,则 视为恒定,则上filnFRT式可写为: (624)CinFRTKEl电位分析法中采用总离子强度调节缓冲溶液(TISAB)的方法来控制溶液的总离子强度。三、标准曲线法将离子选择性电极与参比电极插入一系列已知的标准溶液中,测出相应的电动势,绘制标准曲线,用同样的方法测
42、定试样溶液的 E 值,即可从标准曲线上查出被测溶液的浓度。四、标准加入法(一)一次标准加入法E x=K+SlgCx (625)若在试液中加入 VS的标准溶液,浓度为 CS 则E=K+slg (626)SXC(627)SVsE)(lg(628)XSSC)(10整理得:C X= (629)1SE10V)( 当 VXVS时, 则上式,可写成xsxvC X= (630)1)(SE(二)连接标准加入法将(628)改写成SEX10)V( )VSC(XK令 得 K10S(631)SEX10)( )(SX令 0SV则 =0)C(KOXC X= (632)S五、测量误差ECnFRT25 (633)0257.相对
43、误差 (3900n )% (634)%1E当 0.001V,一价离子相对误差3.9%,二价离子为7.8%E第五节 电位滴定电位滴定法是一种利用电位确定终点的分析方法,电位滴定法与直接电位不同,它是以测量电位的变化为基础的方法,不以某一确定的电位值为计算的依据。本节的重点与难点在于掌握判断滴定终点的方法。一、方法原理电位滴定法是根据电池电动势在滴定过程中的变化来确定滴定终点的一种方法,其装置如图 613。二、确定终点的方法用图解池确定终点EV 曲线法; 曲线法;E 曲线法;2二阶微商内插法确定终点根据表 66 的数据,可以计算加入 21.30ml 27002VE加入 21.40ml 2800滴定
44、剂体积ml 2800274.13.1 x(21.40-21.30)(-2800-2700)=(x-21.30)(0-2700)x21.30+ )ml(550三、指示电极的选择(略)第七章 电解和库仑分析法本章的电解分析是经典的电化学分析方法,它是通过电解后直接称量电析上析出的被测物质的分析方法。内容包括电解分析的基本原理、电解分析方法的应用。库仑分析是在电解分析的基础上发展起来的,它是根据电过程中消耗的电量求得被测物质的含量。在祥细的讲解电解分析的基础,将计量参数由称量沉积物重量转换为以通过电解池的电量来进行计量。本章计划学时数 4 学时。第一节 电解分析法的基本原理内容提要: 电解过程中的电
45、流与电压的关系,分解电压与析出电位及电解分析方法的应用。重点、难点:分解电压与析出电位授课方式: 讲授一、电解分析的基本原理电解过程中电流与电压的关系电解:在电解池的两个电极上施加直流电压,使物质在电极上发生氧化还原反应而引起物质分解的过程。以电解 CuSO4溶液为例,通过改变电阻 R 调节两电极上的电压,将通过电解池电流 i对所施加的外加电压作图,可得 iv 曲线。残余电流:当外加电压很小时,有一个逐渐增加的微小电流通过电解池,这个微小电流称为残余电流。当电位增大到某一数值时,电流迅速增大,并随电压的增大直线上升,电解池内发生明显的电极反应。分解电和析出电位电解发生后,电解产物铜和氧气分别沉
46、积和被吸附在阴极和阳极上,形成铜电极和氧电极构成原电池,该原电池的电动势与外加电压相反阴止电解作用的进行,要维持电析反应进行,必须增大外加电压。考虑到 iR 降,阳极过电位 a和阴极过电位 c分解电压 iR)E()(c二、电解分析方法和应用控制电流电解(恒电流电解)电解中,不断调节外加电压,使通过电解池的电流恒定。特点:电解电流大,并且基本恒定,它的电解效率高,分析速度快。由于阴极电位不断负移,其它离子也有可能沉积下来,所以选择性差。控制电位电解为了使两种或两种以上的金属定量的分离,把阴极电位控制在一定的范围内电解,从而达到分步测量。阴极电位的选择,如果两种金属离子的还原电位相差较大,可以控制
47、阴极电位电解,使两种金属分离,通过能斯特方程计算,可以得出起始浓度大致相同的两种一价离子,只要其标准电位相差 0.3v 以上,就可以通过控制阴极电位电解使其定量分离,对二价和三价离子相差分别为 0.15,0.10v 就可分步测定。电流时间曲线由于控制电位电解,随被测离子不断析出,电解电流不断减小。kt0t1i特点:由于控制阴极电位,能有效地防止共存离子的干扰,因此选择性好。第二节 库仑分析内容提要: 法拉第电解定律、影响电流效率的因素、库仑滴定法重点、难点:库仑滴定法授课方式: 讲授一、库仑分析的基本原理法拉第定律在电极上析出物质的质量与通过电解池的电量计量关系可用下式表达:mQnFM或 ti影响电流效率的主要因素库仑分析的先决条件是电流效率为 100,实际应用中受到一些副反应的影响。溶剂的电极反应、消耗电量电活性杂质在电极上的反应溶液中可溶性气体的电极反应电极自身参与反应电流效率 %10QTS0Q S被测物质消耗的电量 Q t通过电解池总电量二、电位库仑分析基本原理由于控制电位,电解过程中通过电解池的电流发生变化,电量的获得比较麻烦,因此在电路中串联一个库仑计,来求得通过电解池的电量。如气体库仑计