1、西南财经大学经济管理数学分析教学大纲1四川省省级精品课程经济管理数学分析教学大纲一、前言以经典微积分为主体内容的经济管理数学分析,是目前经济类专业中对数学要求较高的专业(如,金融工程、经济学(基地班),统计学、管理科学等)的重要专业基础课程,并逐步成为这些专业课程体系中的主干。本课程选用华东师范大学数学系编,高等教育出版社出版的数学分析(第三版,上、下册)作为基本教材,并以此为蓝本安排教学章节内容,该教材是教育部普通高等教育重点教材,其第一版曾荣获全国第一届高等学校优秀教材优秀奖。二、教学内容本课程总学时约为 192(含习题课),分两个学期授课。本课程主要教学内容分为五个部分:(1)极限理论(
2、包括实数完备性的一系列等价命题);(2)一元函数微积分学;(3)多元函数微积分学;(4)无穷级数理论(包括反常积分理论和含参量积分理论);(5)微积分学方法在经济分析中的应用。其中前三部分主要讲述微积分的基本概念、方法和应用,包括一些相关数学原理的严格证明;第(4)部分讲述极限理论在无穷级数、反常积分和含参量积分理论中的深入应用;第(5)部分讲述经济分析中常见的函数,以及极限、导数,定积分和多元函数微分学方法在经济分析中的应用。极限和实数完备性理论、定积分理论以及极限理论的各种应用对培养学生的抽象思维和逻辑推理能力,对大学数学中必要的方法技巧的掌握都是至关重要的。而微积分学方法在经济分析中的应
3、用可以让经济管理类专业学生初步认识和掌握一些基本的数量经济分析方法,这对于学生进一步的数量经济方面后续课程的学习具有重大意义。同时在教学内容上,也特别重视经济数学建模方法的教学与训练,引导学生将数学实验和课外数学实践活动的有机结合。三、教学大纲 教学大纲西南财经大学经济管理数学分析教学大纲2第一章 实数集与函数实数概述,绝对值与不等式。区间与邻域,确界原理。函数概念,函数的几种表示法,函数的四则运算,复合函数,反函数,基本初等函数,初等函数。具有某些特性的函数。经济管理中常见的函数:需求函数,供 给函数,成本函数,收益函数,利润函数,生 产函数。重点和难点1 简要介绍实数性质及绝对值与不等式;
4、2 重点阐述上、下确界概念及确界原理,这一部分是重点,也有一定的难度,可通过例题和习题让学生加强理解;3 在介绍一般函数概念的同时,强调基本初等函数和初等函数的重要性。强化学生对一般性与特殊性之间辩证关系的认识。教学建议1 定义 1、2、定理 1.1 的证明、3 定义 2 选讲, 补充经济函数。第二章 数列极限数列,数列极限的 -N 定义。收敛数列的性质:唯一性、有界性、保序(号)性、迫敛性、四则运算法则。数列极限存在的条件。连续复利问题。重点和难点1简单介绍数列极限概念 产生的历史过程,从中看到严格的 -N 定义产生的必然性和重要性,使学生真正接受高度抽象、形式化的 -N 定义。其次,通过对
5、 -N 定义的剖析和一些典型例题的深入分析,使学生正确理解数列极限的 -N 定义,并学会运用它来验证数列极限。2在介绍收敛数列的各种性质时 ,突出 强调迫敛性定理是求极限的一种重要方法,并指出用迫敛性求极限时的一些原则和方法。要求学生熟练掌握重要极限: ,并注意将一些数列极限转化为上述重要极en)1(lim限形式。三三三 函数极限函数极限的 -M 定义和 -定义,单侧极限。函数极限性 质 :唯一性、局部有界性、局部保号性、不等式性质、迫敛性、四则运算。函数极限存在的条件:归结原则和柯西准则。两个重要极限。无穷小量及其阶 的比较;无穷大 量及其阶的比较。西南财经大学经济管理数学分析教学大纲3重点
6、和难点1在介绍各种类型的极限定 义之前,先直 观描述极限,然后通过深入分析极限的含义,导出极限的严格的形式化的定义。2要求学生熟练掌握函数极限的性 质和两个重要极限,并熟练用于证明或计算函数极限。三三三 函数的连续性连续性概念,间断点及其分类 ,在区 间上连续的函数。连续函数的性质:局部有界性、局部保号性、四则运算、复合运算,闭区间上连续函数的性质,反函数的连续性,一致 连续性。初等函数的连续性。重点和难点1连续性概念、连续函数的性 质2一致连续性的特征,以及它与 连续性之间的重要差别。教学建议1 例 3、定理 4.10、定理 4.11 选讲。第五章 导数与微分导数概念:导数的定义(导数、左
7、导数、右 导数以及与连续性 间关系)。导数几何意义、物理意义。导函数的概念。求导法则:导数的四则运算。反函数的导数。复合函数的导数。基本求导法则与公式。微分:微分概念。微分的运算法则(一阶微分形式的不变性)。高阶导数及运算。高阶微分。参量方程所确定的函数的 导数。重点和难点问题1 以曲线的切线、直线运动 的瞬时速度为背景,引入 导数的概念。2 求导法则中着重讲清复合函数的求导法则(链式法则)。3 微分的计算中应注意介绍一阶微分形式的不变性。教学建议定理 5.9 及其引理可不讲,换 用传统的证明方法。微分在近似计算中的运用选讲。第六章 微分中值定理及其应用西南财经大学经济管理数学分析教学大纲4中
8、值定理:费马定理预备定理。中 值定理(罗尔、拉格朗日、柯西三大中值定理)。导数极限定理。不定式极限: 型不定式极限。 型不定式极限。其它类型的不定式极限(0等类型)泰勒定理。 带佩亚诺型余项 的泰勒公式。 应用(求极限)。函,00,1数的单调性。极值的必要条件。极值的两个充分条件(第三个充分条件可作 选讲内容)。最大值与最小值。函数的凸性与拐点的概念。函数凸性的判定。函数作图。导数在经济分析中的应用。重点和难点问题1 着重介绍三大微分中值定理及其证明,它 们是利用导数的局部性 质推断函数的整体性态的有力工具。2 以导数为工具在求不定式极限时,应注意洛必达法则成立的条件,以及其它类型间的转化方法
9、。3 泰勒定理是用多项式近似表示函数并用以进行和近似计算与理论分析的一个重要工具。注意介绍几种估计及麦克 劳林公式。4 利用泰勒公式进行近似计算时,注意与前章用(一 阶)微分 进行近似计算比较。5. 注意介绍函数单调性(包括单调区间)的判定方法以及利用单调性证明一些不等式的技巧。6. 着重介绍函数极值的判定及特定情形下函数最大值,最小值的确定,并介绍它们的应用。7. 着重介绍函数凸性的定义及判定方法,并注意介 绍它们 的应用。8. 着重介绍经济分析中的几个概念:边际和弹性,掌握常见经济函数的最优化问题。教学建议泰勒公式在近似计算中的运用、 5 例 3例 5 选讲, 6 简介。补充导数在经济管理
10、中的运用(参考微积分教材)。第七章 实数的一些基本定理确界与确界存在定理。区间套定理。柯西收敛准则。致密性定理。聚点定理。有限复盖定理。关于闭区间上连续函数性质的几个定理的严格证明。重点和难点:1本章定理均在单调有界定理的前提下 讨论。西南财经大学经济管理数学分析教学大纲52建议以区间套定理为主要工具证明其他定理。3在用关于实数完备性的几个定理 证明关于闭区间上连续 函数性质的几个定理的教学过程中,应注意培养学生严 密推理的能力。第八章 不定积分原函数与不定积分概念。基本 积分表。 线性运算法则。换元积分法。分部积分法。有理函数积分法。三角函数有理式的 积分.几种无理函数的积分。重点和难点1要
11、让学生明了原函数与不定 积分的关系(注意与下一章 “原函数存在定理”相呼应),求原函数(与不定积分)运算和求导数(与微分)运算之间的关系,从而理解基本积分公式的本质。2着力引导学生掌握和熟练运用不定 积分的基本公式, 线 性运算法则和换元积分法、分部积分法。注意基本积分运算的原 则与技巧, 这是本章的重点。3在讲授有理函数,三角函数有理数以及几种无理函数的积分法时,要让学生理解基本积分技术的一般应用思路和求这几类函数积分的具体技巧。教学建议3 中有理函数的积分、无理根式的第 2 种类型选讲第九章 定积分从曲边梯形面积与收益问题引出定积分概念。定 积分定义 。定 积分的几何意义。了解可积的充要条
12、件和(达布)上和、下和及其性质。定 积分的性 质:线性运算性质,对区间的可加性、单调性、绝对可积性、积 分(第一)中值定理。积分第二中值定理。微积分学基本定理(原函数存在定理)。牛顿莱布尼 兹公式。定 积分的换元法。定积分的分部积分法。重点和难点1深刻理解并会应用定积分的定 义和性质, 变上限的定积 分及其导数,牛顿莱布尼兹公式,定积分的换元法与分部 积分法等重点内容。2 关于函数可积性的讨论,要求学生了解其思想与方法。教学建议2-4 的定理证明和3 例 3 选讲。第十章 定积分的应用西南财经大学经济管理数学分析教学大纲6平面图形的面积,已知截面面 积函数的立体体积,旋 转 体的体积,曲线的弧
13、长,平均值。补充定积分在经济分析中的应用。重点和难点用定积分的基本思想和微元分析法贯穿各种应用问题,通过各种应用加深对积分思想方法的理解。掌握用微元分析法解题的程序。教学建议将4 的微元法提至本章开始讲解, 2 需补充空间解析几何。第十一章 反常积分无穷限积分的绝对收敛与条件收敛。无 穷积分与无穷级 数的联系。比 较判别法及其极限形式。柯西判别法及其极限形式。积分第二中值定理。阿贝尔判别法与狄利克雷判别法。无界函数反常积分的柯西准则。无界函数反常 积分的绝对 收敛与条件收敛。无界函数反常积分的比较判别法。柯西判别 法及其极限形式。阿 贝尔判别 法与狄利克雷判别法。无界函数反常积分与无穷限反常积
14、分的联系。重点和难点1注意两型反常积分和无穷级数的联系,定 积分概念与性 质以及函数极限概念与性质的联系;两型反常积分相互间的联系。2以无穷限反常积分为基础,平行地建立无界函数反常积 分的有关内容。3本章只讨论两型反常积分的 敛散性问题。至于两型反常积分的定义与简单性质及计算,可安排到定积分的最后一 节。第十二章 数项级数无穷级数概念无穷级数与其部分和数列的关系。级数的收敛与发散。 级数的简单性质。级数收敛的必要条件。级数收敛的柯西准则。正项级数收敛的基本定理(收敛的充要条件是:它的部分和数列 有上界)。比较判别法及其极限形nu)0( nS式。达朗贝尔比值判别法及其极限形式。柯西根值判别法及其
15、极限形式。柯西积分判别法。了解拉贝判别法。交错级数,莱布尼兹判别法。阿贝尔判别法。狄利克雷判别法。绝对收敛与条件收敛。绝对收敛级数的重排定理。绝对收敛级数的乘 积(柯西定理)。条件收敛级数的黎曼定理。重点和难点1 阐明级数与(其部分和)数列的联系与转化。西南财经大学经济管理数学分析教学大纲72 讲清一般项级数与正项级数之间的联系,重 视正项级数在 讨论数项级数时的基本作用。3 讲清一般项级数的绝对收敛与条件收敛的区别与联系,注意这两种收敛性的不同性质与作用。对级数收敛的判别定理主要讲明如何应用及应用中需要注意的问题。Abel 变换(即分部求和公式)值得重视。第十三章 函数列与函数项级数函数列的
16、收敛与一致收敛。函数列在区 间上一致收敛的充要条件。函数项级数的收敛与一致收敛。函数项级数在区 间上一致收敛的充分必要条件。函数项级数在区间上一致收敛的充分条件:魏尔斯特拉斯优级数判别法。阿 贝尔判别法。狄利克雷判别法。一致收敛函数列的极限函数的连续性定理、逐 项积分定理。逐 项求导定理。一致收敛函数项级数的和函数的连续性,逐项积分、逐项求导定理。重点和难点1以函数列在区间上的(点态 )收敛与一致收敛为基础,建立函数项级数在区间上的(点态)收敛与一致收敛的概念及性质。2深入讲解一致收敛性概念,讲清它和点态收敛之间的区 别,选讲典型例题说明“非一致收敛”。3紧密联系数项级数的有关内容,讲述函数项
17、级数的一致收 敛性的判别定理,阐明如何应用这些判别定理以及应用时应当注意的问题。定理的证明过程可讲得简略一些。4(与讨论魏尔斯特拉斯优级 数判别法相配合)。通 过举 例讲清(或布置作业让学生注意)在区间上一致收敛、绝对收敛及 一致收 敛之间的区别与联系。nxu)( nxu)(5在讲述一致收敛的函数列或函数 项级数的连续性、逐 项积 分、逐项求导定理的同时,强调一致收敛性条件的重要性,但又要指出它只是充分条件。教学建议定理 13.2 的证明和1 例 3 选讲,2 的定理证明和例 题选讲。第十四章 幂级数阿贝尔第一定理。收敛半径(收 敛区间)与收敛域。 幂级数的一致收 敛性。幂级数的性质:连续性、
18、逐项积分、逐项微分、四则运算。泰勒级数与麦克劳林级数。函数展开成幂级数西南财经大学经济管理数学分析教学大纲8的条件。初等函数的幂级数展开。重点和难点1通过讨论收敛半径与收敛区 间(域)弄清它们在研究幂级 数(作为一类特殊的“性质好”的函数项级 数)的一致收敛性方面的作用,注意与“函数项级数”部分的相应内容之间的联系。2在讨论幂级数的性质时,要通过典型例题说明级数求和的一些 简单的基本的方法。3在讲授泰勒级数时,要阐明它与前面的泰勒公式的区别 与联系。4对于函数的泰勒展开,要阐明它“直接展开”的根据、思想与方法步骤。更要让学生掌握“间接展开 ”的思想与方法。5举例说明近似计算的思想与方法(包括数
19、 、e 的近似计 算与 、e 是无理数的证明等)。第十五章 多元函数的极限与连续平面点集概念(邻域、内点、界点、开集、 闭集、 闭域等)。了解平面点集的基本定理区域套定理、聚点定理、有限覆盖定理。二元函数概念。二重极限。累次极限。二元函数的连续性、复合函数的连续性定理、有界闭域上连续函数的性 质。重点和难点问题1要求学生理解平面点集概念。平面点集的基本定理和有界域上连续函数的性质可类比于一维直线中的相应定理介绍,不作 证明。2二元函数、二重极限、二元函数的连续性等内容是本章重点,要强调它们和一元函数中的相应概念之间区别(与联系)。教学建议本章定理证明选讲。第十六章 多元函数微分学偏导数概念及其
20、几何意义、全微分概念、全微分的几何意义及应用。复合函数的求导法则及全微分计算,一阶微分形式的不 变性。方向 导数与梯度。高阶偏导数、高阶微分。二元函数的微分中值定理与泰勒公式。二元函数的极值。重点和难点1 应重点加强偏导数的计算训练,特 别是复合函数的偏导计 算。西南财经大学经济管理数学分析教学大纲92 全微分概念要对照一元函数微分概念讲解。要弄清可微性条件,可微与连续、可微与偏导存在,可微与偏导连续 之间的区别与联系。3 二元函数极值也应对照一元函数极值讲解, 强调多元函数极 值问题远比一元函数极值问题复杂。教学建议4 例 10 选讲。4 补充经济应 用。第十八章 隐函数定理及其应用隐函数概
21、念。隐函数定理。隐函数求导。条件极值。拉格朗日乘数法。重点和难点:1. 要求学生深入理解隐函数的概念,并通 过隐函数的在几何、坐标变换及条件极值等方面的应用加深理解隐函数的概念与作用。2. 要求学生掌握隐函数的求 导方法,并注意在关于隐函数的讨论与计算时考虑是否满足隐函数定理的条件。教学建议2,3 选讲。4 补充经济应用。第十九章 含参量积分含参量常义积分概念。含参量常 义积分的连续性、可 积性、可微性、积分次序的变换。含参量广义积分的概念;含参量广义积分的收敛与一致收敛。含参量广义积分的一致收敛判别法:Cauchy 准则。Weierstrass 判别法.Abel 判别法。Dirichlet
22、判别法。含参量广义积分的性质:连续性定理、可微性定理、可积性定理、积分次序交换定理。*Euler 积 分(-函数、B-函数)。重点和难点:1着重讲解含参量广义积 分的收敛与一致收敛概念,利用典型例题说明“ 非一致收敛”。2强调含参量广义积分与函数 项级数在论证方法上的相似性,对照函数项级数的有关概念、讨论含参量广义积分的相 应概念与性质。1讲述一致收敛性判别定理时,应突出这些定理的应用及 应用时应注意的问题。2在讲述含参量广义积分的性质各定理的同时,强调一致收 敛性条件在定理中的重西南财经大学经济管理数学分析教学大纲10要性,但又应强调只是充分条件。第二十一章 重积分二重积分概念:矩形区域上的
23、二重积分。二重 积分的性 质。二重 积分的可积条件。一般区域上的二重积分。二重积分的 计算:化二重积分为累次积 分。二重 积分换元法(极坐标变换与一般变换)。重积分的应用:平面 图形的面积,空 间立体的体 积等。重点和难点1在重积分概念中,着重讲解二重积分概念,强调定义中分割、求和、取极限三步骤,以及分割的分法与介点取法的两个“任意性”。2深入讲解二重积分的可 积性问题, 讲清可积的必要条件、充分条件及充要条件。3重积分的性质可与定积 分性质对比,作一般介 绍。4.强调和强化重积分计算。5.用微元法讲重积分应用,让 学生掌握微元法思想,并 处理 实际应用问题(主要是几何、物理应用)。 重积分只
24、作简要介 绍。n教学建议1“平面图形的面积” 选讲,4 的定理证明选讲。6 重积分的应用主要讲曲顶柱体的体积应用。习题以每节划线前的习题为主,以每 节划线后的习题和总练习题为辅 。四、参考书目数学分析学习指导书(华东师大吴良森等编,高等教育出版社)数学分析讲义( 上 /下 册 ) (刘玉琏等编 高等教育出版社)工科数学分析基础( 上 /下 册 ) (王绵森等编 高等教育出版社)高等数学习题集 (同济大学应用数学系 高等教育出版社)五、课时分配表西南财经大学经济管理数学分析教学大纲112012 级课时分配表第一学期(90 学时)第一章 实数集与函数 4 时1-2 实数、数集与确界原理 2 时3-
25、4 函数与函数的性 质 2 时第二章 数列极限 12 时1 数列极限的定义 4 时 2 数列极限的性质 4 时 3 收敛条件 4 时第三章 函数极限 16 时1 函数极限的定义 4 时2 函数极限的性质 2 时3 函数极限存在的条件 2 时4 两个重要的极限 2 时5 无穷小及其比较 4 时习题课(2-3 章) 2 时第四章 函数的连续性 8 时1 连续性概念 2 时2 连续函数的性质 3 时3 初等函数的连续性 1 时习题课 2 时 第五章 导数与微分 14 时1 导数概念 3 时2 求导法则 3 时3 含参量函数的导数 2 时4 高阶导数 2 时5 微分 2 时习题课 2 时第六章 中值定
26、理及不定式极限 18 时1 拉格朗日定理和函数的单调性 4 时2 柯西中值定理和不定式极限 3 时西南财经大学经济管理数学分析教学大纲123 泰勒公式 3 时4 函数的极值与最大(小) 值 2 时补充:导数在经济 分析中的应用 2 时 5 函数的凸性与拐点 1 时6 函数图像的讨论 1 时习题课 2 时第七章 实数的完备性 2 时1 关于实数集完备性的基本定理 2 时第八章 不定积分 10 时1 概念与基本公式 2 时2 换元积分法与分部积分法 5 时3 有理函数的积分 1 时习题课 2 时第九章 定积分 10 时1+3 定积分的定义+可积条件 2 时4 定积分的性质 2 时2 牛顿莱布尼兹公
27、式 2 时5 定积分计算 2 时习题课 2 时第二学期(90 学时)第十章 定积分的应用 8 时1 平面图形的面积 2 时2 由平行截面面积求体积 2 时3(补充) 定积分在经济分析中的应用 2 时习题课 2 时第十一章 反常积分 8 时1 反常积分的概念 2 时2 无穷积分的性质与收敛判别 3 时3 瑕积分的性质与收敛判别 1 时习题课 2 时第十二章 数项级数 12 时西南财经大学经济管理数学分析教学大纲131 级数的收敛性 3 时2 正项级数 4 时3 一般项级数 3 时习题课 2 时第十三章 函数列与函数项级数 4 时1 一致收敛性 2 时2 一致收敛函数列和函数项级数的性质 2 时第
28、十四章 幂级数 8 时 1 幂级数 3 时 2 函数的幂级数展开 3 时习题课 2 时 第十六章 多元函数的极限与连续 4 时1 平面点集与多元函数 2 时2-3 二元函数的极限与 连续性 2 时 第十七章 多元函数微分学 16 时 1 可微性 4 时2 复合函数微分法 4 时3 方向导数和梯度 2 时4 Taylor 公式和极值问题 4 时习题课 2 时第十八章 隐函数定理及其应用 8 时1 隐函数 2 时2 隐函数组 1 时3 几何应用 1 时4 条件极值 2 时习题课 2 时第十九章 含参量积分 8 时1 含参量正常积分 3 时2 含参量反常积分 2 时3 欧拉积分 1 时西南财经大学经济管理数学分析教学大纲14习题课 2 时第二十一章 重积分 14 时1 二重积分概念 2 时2 直角坐标系下二重积分的计算 4 时4 二重积分的变量变换 2 时5 三重积分 2 时6 重积分的应用 2 时习题课 2 时