收藏 分享(赏)

非稳定状态热传导.doc

上传人:weiwoduzun 文档编号:2665833 上传时间:2018-09-24 格式:DOC 页数:11 大小:913.50KB
下载 相关 举报
非稳定状态热传导.doc_第1页
第1页 / 共11页
非稳定状态热传导.doc_第2页
第2页 / 共11页
非稳定状态热传导.doc_第3页
第3页 / 共11页
非稳定状态热传导.doc_第4页
第4页 / 共11页
非稳定状态热传导.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、100學 年2-1熱 傳 導一 、 實 驗 目 的1.了 解 熱 傳 導 溫 度 變 化 與 物 體 形 狀 、 大 小 及 物 理 性 質 之關 係 。2.由 理 論 推 衍 出 溫 度 變 對 時 間 之 無 因 次 函 數 關 係 與 實 驗結 果 比 較 。3.由 未 知 材 料 物 質 依 理 論 之 或 h值 , 求 得 實 驗 值 。二 、 實 驗 原 理本 實 驗 以 固 體 不 穩 定 熱 傳 導 之 測 定 來 研 討 不 同 之 熱傳 導 係 數 對 傳 熱 之 影 響 , 並 利 用 試 誤 法 (Trail and Error Method)求 出 某 一 測 試 體

2、 之 熱 傳 導 係 數 。設 將 一 溫 度 均 勻 分 佈 的 測 試 體 置 入 一 恆 溫 槽 中 , 此時 在 這 物 體 上 任 何 位 置 的 溫 度 決 定 於 該 物 的 幾 何 形 狀 ,大 小 和 物 理 性 質 。 故 兩 物 體 幾 何 形 狀 和 大 小 相 同 之 條 件下 , 則 僅 與 該 試 體 的 物 理 性 質 (包 括 密 度 、 比 熱 和熱 傳 導 度 )有 關 。 一 般 的 測 試 體 (Test Specimen)其 幾 何 形 狀 分 別 探 討 如 下 :(一 )平 板 (Slab)對 於 物 理 性 質 為 一 定 之 無 限 平 板

3、(Imint Wide Slab), 在 不 穩 定 狀 態 下 之 傳 導 過 程 , 應 用 傅 立 葉 熱 傳導 定 律 (Fouriers Law of Heat Conduction)與 能 量平 衡 , 可 得 如 下 之 偏 微 分 方 程 (Partial Differential Equation)最 後 可 分 解 成 4個 無 因 次 群 ,以 函 數 形 式 表 示 :2xTt(1)其 邊 界 條 件 為 :100學 年2-20 )( 00tThxkLxTt其 中T: 溫 度t: 熱 傳 時 間pCk: 熱 擴 散 係 數k: 固 體 之 熱 傳 導 係 數: 固 體

4、之 密 度p: 固 體 之 熱 容 量x: 平 板 厚 度 方 向 之 座 標L: 平 板 一 半 之 厚 度h: 外 界 流 體 的 傳 熱 係 數T0: 固 體 之 起 始 溫 度: 外 界 的 流 體 溫 度故 適 合 邊 界 條 件 之 完 全 解 為 1 220 )1)()(cosse(exp2n nnkLhxLtT(2)其 中 n為 方 程 式 )ta(之 正 根 , 若 以 無 因 次 群 之函 數 形 式 , 可 表 示 為 :)(,)(20 LxhkRtfT(3)其 中100學 年2-30T: 無 因 次 溫 度2Rt: 無 因 次 時 間khL: Biot Modulusx

5、: 無 因 次 長 度在 平 板 之 中 心 , 即 0)(Lx處 , (3)式 之 結 果 , 可由 Figure a-1來 表 示 。Figure a-1 在 不 穩 定 狀 態 下 傳 熱 時 平 板 中 心 之 無 因次 溫 度(二 )圓 柱 體 (Cylinder)100學 年2-4對 於 物 理 性 質 為 一 定 之 無 限 圓 柱 體(Infinitelv Long Cylinder), 在 不 穩 定 狀 態 下 之 傳 導過 程 , 應 用 傅 立 葉 熱 傳 導 定 律 與 能 量 平 衡 , 可 得 如 下 之偏 微 分 方 程 式 : )(rTt(4)其 邊 界 條

6、件 為 : 0 )(- t 0 0r ThrkRr Rt 值其 中r: 圓 柱 體 半 徑 方 向 之 座 標R: 圓 柱 體 之 半 徑故 適 合 邊 界 條 件 之 完 全 解 為 :(5)1 0220 )()(exp2n nnJkRhRrtT其 中 n為 方 程 式 01J之 根 , 而 )(rJn為 r之 n階 Bessel函 數 。 若 以 無 因 次 群 之 函 數 形 式 來 表 示 ,其 解 為 :(6)(,)(20 RrhkRtfT其 中 2Rt: 無 因 次 時 間100學 年2-5khR: Biot Modulusr: 無 因 次 長 度在 圓 柱 體 之 中 心 , 即

7、 0)(Rr處 , (6)式 之 結 果 ,可 由 Figure a-2來 表 示 。Figure a-2 在 不 穩 定 狀 態 下 傳 熱 時 圓 柱 體 中 心 之 無因 次 溫 度(三 )球 體 (Sphere)對 於 物 理 性 質 為 一 定 之 球 狀 固 體 , 在 不 穩 定 狀 態 下100學 年2-6之 傳 導 過 程 , 應 用 傅 立 葉 熱 傳 導 定 律 與 能 量 平 衡 , 可 得如 下 之 偏 微 分 方 程 式 :(7)(2rTtT其 邊 界 條 件 為 0 )(- t 0 0r ThrkRr Rt 值其 中r: 球 半 徑 方 向 之 座 標R: 球 之

8、 半 徑故 適 合 邊 界 條 件 之 完 全 解 為 :(8)1220 )cos(in)()(expn nnnRtT其 中 為 方 程 式 之 根 , 若 以 無 因 次 群 之 函 數 形 式 來 表 示 ,其 解 為 :(9)(,)(20 RrhkRtfT其 中 2Rt: 無 因 次 時 間100學 年2-7khR: Biot Modulusr: 無 因 次 長 度在 圓 球 之 中 心 , 即 ( Rr)=0處 , (9)式 之 結 果 ,可 由 Figure a-3來 表 示 。Figure a-3 在 不 穩 定 狀 態 下 傳 熱 時 球 體 中 心 之 無 因次 溫 度三 、

9、實 驗 裝 置100學 年2-8(a)Slab (b)Cylinder (c)SphereFigure b 各 種 測 試 體 之 幾 何 形 狀(1) 大型恆溫槽:自動溫度控制,提供所需溫度環境。(2) 循環槽:測試物體恆溫用。(3) 循環泵:使流體於恆溫槽和循環槽間循,流量由考克控制。(4) 電阻式溫度計:(RT-100 ohm)測量試體和流體溫度。(5) 測試物體:(溫度感測器已插入物體中央)共六件,作實驗試時由助教指定,注意小心取用。(6) 游標尺100學 年2-9四 、 實 驗 步 驟1.在 高 溫 恆 溫 槽 中 加 入 八 分 滿 水 (約 在 出 口 下 端 ),開 啟 電 源

10、 加 熱 至 60 。2.打 開 泵 浦 (pump), 並 調 節 循 環 式 恆 溫 槽(circulation chamber)內 水 流 量 使 其 不 溢 出 , 同 時打 開 測 溫 器 量 測 槽 內 之 溫 度 , 並 保 持 溫 度 恆 定 , 記 錄此 溫 度 (T )。 (塑 膠 試 體 勿 超 過 攝 氏 60度 ) 3.取 測 試 體 並 接 上 測 溫 器 , 先 測 其 初 溫 (T0)用 掛勾 勾 起 再 放 入 循 環 式 恆 溫 槽 , 同 時 每 隔 30秒 記錄 一 次 溫 度 直 至 溫 度 不 再 改 變 為 止 。4.改 變 各 種 形 狀 之 測

11、 試 體 , 重 覆 步 驟 3。5.關 掉 所 有 電 源 , 排 放 槽 內 的 水 , 結 束 實 驗 。6.量 測 各 測 試 體 之 半 徑 及 密 度 。不 鏽 鋼 : 密 度 7900 kg/m3, 熱 容 量 477 J/kg K塑 膠 : 密 度 1600 kg/m3, 熱 容 量 1120 J/kg K五 、 注 意 事 項1.各 測 試 體 之 電 線 不 可 任 意 搖 晃 , 請 小 心 不 可 弄 斷 。2.先 查 出 測 試 體 之 物 理 性 和 其 隨 溫 度 變 化 情 形 。六 、 實 驗 結 果 100學 年2-10(一 )數 據 記 錄測試體之材質:

12、形 狀 : 熱容量: 測試體之長: 寬: 高: 半徑: 時 間t(sec)初 始溫 度T0( )加 熱 後 水 溫 度T ( )測 試 體 之 中 心溫 度T ( )無 因 次 溫 度0T(二 )結 果 整 理1.各 種 待 測 物 之 實 際 溫 度 對 時 間 作 圖 (作 圖 在 同 一張 紙 )。2.利 用 實 驗 所 得 之 無 因 次 溫 度 (T -T)/(T - T0)對 (t/L2)或 (t/R2)之 函 數 圖 形 (Figure a-1、 a-2或 a-3)上 作 圖 , 並與 圖 中 (k/hL)或 (k/hR)線 對 照 , 找 出 最 適 合 的 值 , 計 算對

13、流 熱 傳 係 數 h。3.當 試 體 之 密 度 、 比 熱 及 對 流 熱 傳 係 數 h為 已 知 , 利 用 試誤 法 先 假 設 k值 , 以 (k/hL)或 (k/hR)為 斜 率 在 函 數 圖 形(Figure a-1、 a-2或 a-3)上 作 圖 , 交 x軸 一 點 算 出 k值 , 與假 設 值 比 較 , 若 不 相 同 , 則 重 新 假 設 k值 , 再 以 同 法 進行 , 直 至 相 同 為 止 , 進 而 求 得 測 試 體 之 熱 傳 導 係 數k。4.將 實 驗 中 待 測 物 之 熱 傳 導 性 質 (理 論 與 實 驗 結 果 ), 以列 表 方 式 做 一 比 較 。100學 年2-11七 、 問 題 與 討 論1.試 比 較 不 同 待 測 物 之 實 際 溫 度 對 時 間 之 影 響 。2.比 較 待 測 物 之 間 的 熱 傳 導 性 質 , 理 論 與 實 驗 結 果 是 否相 符 。3.試 證 式 (3)、 (6)、 (9)中 之 因 次 群 為 無 因 次 , 及 說明 此 因 次 群 之 名 稱 及 物 理 意 義 。4.為 何 在 本 實 驗 中 要 使 用 相 同 幾 何 形 狀 和 大 小 的 試 體 來決 定 熱 傳 導 度 是 很 重 要 的 ?

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 管理学资料

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报