1、0调试方案调试方案 CASS 工艺调试方案XXXXXXXXXXXXXXXXXXXXXXX二一四年八月第 1 页 共 24 页目 录一、 废水处理常识 81.1 废水的来源及性质 .81.2 废水处理方法 .9二、 CASS 工艺介绍 .92.1 CASS 工艺概述 92.2 CASS 工艺原理 .102.2.1 生物选择器 102.2.1 主曝气区 112.3 CASS 工艺优点 .11三、 CASS 工艺调试及运行维护 .133.1 调试前的准备工作 133.2 CASS 工艺活性污泥培养和驯化 .143.3 活性污泥培养和驯化中注意事项 153.4 CASS 工艺主要运行参数确定 183.
2、5 CASS 工艺主要设备的运行维护 .19四、 常见异常情况及解决方法 22第 2 页 共 24 页CASS 工艺调试方案、废水处理常识1.1 废水的来源及性质1.1.1 废水的来源废水从其来源分为工业废水和生活废水。a. 生活废水:人们日常生活中产生的厨、厕、洗浴、洗涤废水。生活废水的可生化性好,处理难度相对较小,处理工艺成熟可靠。b. 工业废水:工业生产过程中排放的废水。工业废水的水质变化大、往往含特异性污染物,比较难于处理。1.1.2 废水中污染物分类废水中的重要污染物种类为:a. 无机污染物:沙石、无机悬浮物、渣、溶解在水中的各种无机盐、重金属等。b. 有机污染物:溶解在水中的蛋白质
3、、脂类、糖类、有机酸、醇类等,容易被维生物分解,但纤维素、木质素等天然有机物则较难降解。c. 微生物:主要指病源微生物,包括致病细菌和病毒。1.1.3 几个常用的污染浓度指标废水污染程度的高低,用下列指标来进行量化评价。a. COD:采用化学强氧化剂对废水中的有机物进行化学氧化,消耗的氧量即为化学需要量。化学强氧化剂不仅能使废水中的绝大部分有机物氧化,同时也能使废水中的还原性无机物氧化。COD 测定时通常采用重铬酸钾( K2Cr2O7) 。b. BOD5:废水中的有机物种类繁多,测定每一种有机污染物的浓度是不现实的,由于大多数有机污染物在有氧条件下能被相应的微生物降解,耗氧量与有机物浓度成正比
4、,因此测量降解过程中消耗的氧量即可间接而定量反映废水中有机污染物的浓度高低,这个耗氧量就是生化需氧量。实际工作中,采用 BOD5(5 日生化需氧量) ,即 1 升废水在 20条件下培养 5 天的生化需氧量。BOD 5 反映了废水中可生化降解的有机物浓度。c. SS:悬浮固体含量,由挥发性固体和非挥发性固体组成。第 3 页 共 24 页d. N:废水中的氮以下列形式存在:有机氮:包括蛋白、氨基酸、尿素、尿酸,等等;氨氮:即3 价氮,NH 3,NH 4+;硝态氮:即亚硝酸氮(NO 2-) 、硝酸氮(NO 3-) 。在化学分析中,有机氮和氨氮称为凯氏氮(TKN) ,凯氏氮加硝态氮为总氮(TN) 。e
5、. P:磷在废水中以正磷酸盐、偏磷酸盐、有机磷存在。N、P 在水体中存在可引起水体富营养化。f. 其它:重金属,酚,氰,油类,表面活性剂,Cl ,硫酸盐,PH ,色度,等。1.2 废水处理方法 废水处理方法分为三类:物理法,化学法,生物法。1.2.1 物理法利用物理手段分离废水中的固体类污染物。比如格栅、砂滤、沉淀、气浮、离心设备,等。1.2.2 化学法利用化学反应改变污染物性质,使之从废水中除去。如酸碱中和、化学沉淀、化学氧化、电解,等。1.2.3 生物法也称生物化学法,简称生化法。利用自然界存在的各种微生物,将废水中的有机污染物进行分解和转化,达到净化的目的。由于废水中的污染物多种多样,一
6、个完整的污水处理系统通常根据实际需要,将三种处理方法进行有机组合。、CASS 工艺介绍2.1 CASS 工艺概述CASS(Cyclic Activated Sludge Technology)工艺是一种循环式活性污泥法,它是SBR工艺的一种更新变型。1978年,Mervyn Cgoronszy教授将生物选择器和序批式活性污泥法结合起来开发成功了循环式活性污泥法,并于1984和1989年在美第 4 页 共 24 页国和加拿大取得了专利(CASS)。CASS工艺由于其投资小、运行费用低、处理效率高,尤其是优异的脱氮除磷功能而越来越得到重视。该工艺己广泛应用于城市污水和各种工业废水的处理,目前全世界
7、有大量的各种规模的CASS污水处理厂正在运行或建造中。CASS池为一间歇式反应器,由生物选择器、缺氧区、和主曝气区组成,在此反应器中活性污泥法过程按曝气和非曝气阶段不断重复,将生物反应过程和泥水分离过程结合在一个池子中进行。整个系统以推流方式运行,而各反应区则以完全混合的方式实现同步炭化和硝化-反硝化功能。2.2 CASS 工艺原理2.2.1 生物选择器每个CASS反应器至少由二个区域组成,即生物选择区和主反应区,但也可在主反应区前设置一兼氧区。生物选择器(也称预反应区) ,是一容积较小的污水污泥接触区(容积约为反应器总容积的10),位于主曝气区前段,保持厌氧环境。污水经格栅和沉砂池,去除较粗
8、大的无机颗粒和漂浮物,然后进入选择器,与主曝气区回流来的污泥混合液(回流量约为日平均流量的20)充分接触混合,完成一系列生化反应。由于回流污泥己经经过充分曝气,而且进水有机物浓度又较高,因此污泥保持在高活性状态,在厌氧环境下与较高浓度的废水充分接触时,微生物对有机物的去除是通过胞外酶水解可溶性的大分子有机物成小分子并吸收进细胞体内,以及依靠生物吸附作用来实现,这个过程速度快、需时短、不耗能。污泥中的反硝化菌以污水中的有机物为碳源,还原硝态氮为氮气,实现脱氮。聚磷菌则分解体内的聚磷酸盐成磷酸盐释放到污水中,获得的能量用于吸收废水中的有机酸和成a一轻基丁酸(P船)并存储于细胞内,这为好氧条件下的过
9、量摄磷创造了条件。同时预留充分的时间使污泥中的糖类降解,从而控制污泥含糖量,避免其对除磷的负面影响。在厌氧环境下,通过厌氧菌和兼性菌的作用,许多难降解的复杂有机物被分解为易生物降解的物质,对改善污水的可生化性、提高系统处理效果具有重要意义。提高后续生物曝气的氧传质效果。污水从厌氧环境进入好氧环境时,氧向污水中转移所需的传质推动力(浓度差)最大,氧利用率高,有利于减少能耗,获得较理想的能耗效益比。此外,大量工程实践证明,推流式曝气池发生污泥膨胀的可能比完全混合式曝气池小得多,说明底物浓度渐变的环境能有效防止污泥膨胀,高了系统的稳定性。第 5 页 共 24 页2.2.2 主曝气区主曝气区是CASS
10、工艺的主要反应区,有机物的进一步降解稳定、硝化、除磷以及最终的泥水分离、出水均在此完成。在运行过程中,控制曝气强度以及曝气池中溶解氧含量,以使主反应区混合液处于好氧状态,保证污泥絮体的外部有一个好氧环境进行硝化。活性污泥结构内部基本处于缺氧状态,溶解氧向污泥絮体内的传递受到限制,而较高的硝酸盐浓度(梯度)则能较好地渗透到絮体内部,有效地进行反硝化,从而使主反应区中同时发生有机污染物的降解以及同步硝化和反硝化作用。CASS的运行方式由充水一曝气、充水一泥水分离、上清液排除和充水一闲置四个阶段组成。处理周期为4小时:2小时曝气,1小时沉淀,l小时滗水闲置。运行时,污水分批进入反应池,然后按进水一曝
11、气、进水沉淀、滗水、进水一闲置组成一个运行周期,分别完成有机物降解、硝化反硝化、生物除磷和排水功能。循环过程中,反应器内水位在设计最高水位和设计最低水位之间变化,是一个交容积的运行过程。本工艺在运行方式上非常灵活,即使水质水量有较大波动时,亦能根据进水条件的变化做出适当的调整,选择合理的操作方案。在高度自动化控制的条件下,这种调整非常容易实现,具有不可比拟的灵活性和先进性。2.3 CASS 工艺优点(1)设置生物选择区防止污泥膨胀从构造上看,CASS反应器与SBR反应器最大的不同就是在进水处设置了一个小容积的生物选择区,并进行污泥回流,保证了活性污泥不断地在选择器中经历了一个高絮体负荷阶段,从
12、而有利于系统中絮凝性细菌的生长并提高污泥活性。废水首先进入生物选择区,在其中形成很高的基质浓度。根据JChudoba于1973年提出的动力学选择理论可知,高浓度条件下,絮状细菌对有机物的利用速率要高于丝状细菌,所以选择区内很高的基质浓度有利于絮状细菌的快速繁殖,抑制丝状菌的增长,从而有效克服了污泥膨胀,提高系统的运行稳定性。另外,生物选择区中活性污泥通过快速的吸附吸收,可提高有机物的去除能力和氧的利用率,从而缩短反应时间,加速了反应的进程。(2)高效的同步硝化反硝化CASS的一个重要特点就是在不设缺氧混合阶段的情况下而实现高效的同步硝化反硝化。在活性污泥絮体中,絮体外表面与气液直接接触,所以D
13、O浓度较高,微生物以好氧菌和硝化菌占优势;絮体内部由于氧的传递受阻以及外部氧被消耗而形成了缺氧微环境,反硝化菌占优势。所以通过对DO质量浓度的控制(2-3mgL),可第 6 页 共 24 页以很好的实现同步硝化反硝化,从而深度脱氮。非曝气阶段的沉淀污泥床也有一定的反硝化作用,通过污泥回流带回生物选择器的部分硝酸盐氮也将得到反硝化,从而使系统有良好的脱氮效果。(3)良好的生物脱氮除磷功能CASS工艺以曝气一非曝气的方式运行,使其中的活性污泥不断经历好氧缺氧一厌氧的环境条件,有利于聚磷茵的生长和繁殖:而且生物选择区的厌氧环境也可以促进磷的释放,并且聚磷菌在此过程中吸附和吸收大量易降解溶解性有机物质
14、,为后续的好氧吸磷提供了大量的营养物质,根据Goronszy等人的研究,当微生物体内吸附和吸收大量易降解物质而且处在氧化还原电位为+1 00mV-1 50mV的交替变化中时,系统可具有良好的生物除磷功能。(4) 运行灵活,抗冲击能力强,可实现不同的处理目标CASS中生物选择区对进水基质的快速吸附和吸收作用,很大程度上降低了进水负荷的波动对CASS主曝气区的影响,而且污水在CASS中呈现完全混合的状态,也可以很好的缓解水质水量的波动,当进水发生变化影响污泥性能和处理效果时,可简单调节进水和曝气循环系统,以适应水质变化,具有无可比拟的操作上的灵活性。(5)良好的污泥沉淀性能CASS 反应池曝气结束
15、后的沉降阶段中整个池子面积均可用于泥水分离,其固体通量和泥水分离效果要优于传统活性污泥法。另外,CASA 沉淀阶段不进水,保证了污泥沉降无水力干扰,取得良好的分离效果。(6)工艺流程简单不设初沉池、二沉池以及较大规模的回流污泥泵站,用于生物选择器的回流系统的回流比仅为 20,土建和设备投资低。(7)剩余污泥量小,性质稳定传统活性污泥法的泥龄仅 27 天,而 CASS 法泥龄为 25-30 天,所以污泥稳定性好,脱水性能佳,产生的剩余污泥少。去除 1.0kgBOD 产生 0.20.3kg 剩余污泥,仅为传统法的 60左右。由于污泥在 CASS 反应池中已得到一定程度的消化,所以剩余污泥的耗氧速率
16、只有 10mgO2/g MLSS.h 以下,一般不需要再经稳定化处理,可直接脱水。而传统法剩余污泥不稳定,沉降性差,耗氧速率大于20mgO2/g MLSS.h ,必须经稳定化后才能处置第 7 页 共 24 页、CASS 工艺调试及运行维护城市污水厂对竣工后的污水处理构筑物验收工作结束后,即可进行污水处理构筑物的调试,调试对采用生物处理法的污水厂是必不可少的阶段。3.1 调试前的准备工作(1)各构筑物建成,并经清池清除建筑垃圾,静压试验证明无渗漏,无下沉位移,最后按有关规程验收合格。(2)根据日后运行管理需要,有条件的污水处理厂(站)需进行最基本的常规化验测试,如 pH、水温、COD、DO、生物
17、相等,用以指导活性污泥的培养过程和日常运行。(3)基础数据的调查摸底,包括污水流量昼夜变化情况,水质(pH、水温、COD、BOD 5COD Cr、含氮、含磷、有毒物质等)及其变化情况,各种设施和设备的技术参数。有条件的地方最好对受纳水体(如接纳排污的河流等)本底水质调查备案,以便考察若干年后对受纳水体的影响提供依据。(4)根据处理水质状况备足必需的营养物(碳源、氮源、磷源)以备用。采用接种培菌法还需备足污水性质相似其他污水处理厂(站)的干(或浓缩)污泥作为活性污泥微生物培养用的菌种。(5)操作人员应熟悉整个系统的管道布置和公用工程方面的情况,了解污泥培养的基本过程和控制要求。(6)人员到位,自
18、培养和驯化后一般应使系统连续运行,不能脱人。(7)编制必要的化验和运转的原始记录报表以及初步的建章立制。从培菌伊始,逐步建立较规范的组织和管理模式,确保启动与正式运行的有序进行。污水厂各个岗位工作人员的就位、物资准备、污水厂相关资料及实验仪器、设备的准备这些都是必不可少的。3.2 CASS 工艺活性污泥培养和驯化3.2.1 CASS 池活性污泥的培养CASS 工艺处理污水的关键在于有足够数量性能良好的活性污泥,因此活性污泥的培养是 CASS 法生产运行的第一步,驯化则是对混合微生物群体进行淘汰和诱导,使之成为具有处理污水能力的微生物体系。第 8 页 共 24 页所谓活性污泥的培养,就是为活性污
19、泥微生物提供一定的生长增殖条件,包括营养物质、溶解氧、适宜的温度和酸碱度等。在此条件下,经过一段时间的培养,活性污泥形成并逐渐增多,最后达到处理污水所需的污泥浓度。城市污水处理厂工艺调试中污泥培养与驯化同地域的气候密切相关,为了实现调试进度计划,可采用直接培养法、放大培养法或间歇培养法。(1)直接培养法。直接培菌方法在生活污水处理厂应用较多。在温暖季节,先使曝气池充满生活污水,闷曝(即曝气而不进污水)数小时后,即可连续进水出水。进水量从小逐渐增大,污泥不外排,全部回流至曝气池。连续运行数天后可见活性污泥开始出现并逐渐增多。或者从同类污水处理厂提取的脱水污泥按一定比例投入反应池内,同法培养,直到
20、 MLSS 和 SV 达到适宜数值为止。由于生活污水营养适合,所以污泥很快就会增长至所需的浓度。培菌时期(尤其是初期),由于污泥浓度较低,要注意控制曝气量,防止曝气过量,造成污泥解体。(2)放大培养法。对于附近无生化处理系统的地区,或者规模较大的工业污水处理系统,在污泥接种有困难的情况下,也可以采用级数扩大法培菌。根据微生物生长繁殖快的特点,仿照发酵工业中的菌种种子罐发酵罐级数扩大培养的工艺,因地制宜,寻找合适的容器,分级扩大培菌。例如,一座反应池中,投加高浓度粪便以增加污水的浓度和营养,随后以污水充满廊道并按上述方法培菌。然后加以扩大,最后将污泥扩大至整个曝气池。(3)间歇培养法。本法适用于
21、生活污水所占比例较小的城市污水厂,将污水引入曝气池,水量约为曝气池容积的1/41/3,曝气一段时间(约 46小时),再静置11.5小时。排放上清液,排放量约占总水量的50% 左右。此后再注入新鲜污水,重复上述操作,每天1-3次。只曝气而不进水称为 “闷曝”。以后循环进行闷曝、静沉和进水三个过程,但每次进水量应比上次有所增加,每次闷曝时间应比上次缩短,进水次数增加。当曝气池中的污泥浓度达到1000mg L,此时即可停止闷曝,连续进水连续曝气,并开始回流污泥,最初的回流比不宜太大,可取25、随着污泥浓度的升高,逐渐将回流比增加到设计值,直到混合液中的污泥量达到1520%时为止。这里要分清间歇进水闷
22、曝和连续进出水曝气这两个概念,前者是为了积累更多的活性污泥,使微生物细菌能充分利用混合液的营养成分又使之不受池中遗留毒素抑制,需要适时地排出上清液(通过设置的半放空管排出 ),后者为尽快投入常运行创造条件也能积累活性污泥,但由于活性污泥生长过慢,需要及第 9 页 共 24 页时适当补充浓度高的粪便污水。活性污泥是活性污泥处理技术的核心。在活性污泥反应器一曝气池内形成发育良好的活性污泥絮体,是使活性污泥处理系统保持正常净化功能的关键。3.2.2 CASS 工艺活性污泥驯化对 CASS 池的活性污泥,除培养外还应加以驯化,使其适应于所处理的污水。驯化方法可分为异步驯化法和同步驯化法两种。异步驯化法
23、是先培养后驯化,即先用生活污水或粪便稀释水将活性污泥培养成熟,此后再逐步增加工业污水在培养液中的比例,以逐步驯化污泥。同步驯化法是在开始用生活污水培养活性污泥时,就投加少量的工业污水,以后则逐步提高工业污水在混合液中的比例,逐步使活性污泥适应工业污水的特性。CASS 池活性污泥量达到要求后,应逐步向池中进水,使活性污泥以推流方式依次进入生物选择器-反应区,进一步将活性污泥驯化以适应脱磷除氮的要求。当 CASS 池系统出水各项指标均达到设计要求,并稳定运行 23 日后,CASS 池工艺调试合格。3.3 活性污泥培养和驯化中注意事项由于活性污泥的培养是为活性污泥微生物提供适宜的生长繁殖条件,即营养
24、物,溶解氧,适宜温度和酸碱度等。所以要控制好水中各项条件以促进微生物的生长。根据化验数据和对微生物的观察、以及出现的各种异常情况等,对运行参数采取相应的操作,使各项参数控制在合适的范围内。(1)营养物营养物质的多少关系到污泥培养速度。在培训初期,应在进水中增加营养物质。参与活性污泥处理的微生物,在其生命活动中,需要不断地从其周围环境的污水中吸取其所必要的营养物质,这里包括:碳源、氮源、无机盐类及某些生长素等。污水中碳、氮、磷之比应保持100:5:1。一般来说,生活污水和城市污水中含有的营养物质是充足的,可以满足微生物的需要。(2)溶解氧(DO)控制溶解氧是影响生物处理效果的重要因素。在好氧生物
25、处理中,如果溶解氧不足,好氧微生物由于得不到充足的氧,其活性将受到影响,新陈代谢能力降低,同时对溶解氧要求低的微生物逐步成为优势种属,影响正常的生化反应过程,造成处理效第 10 页 共 24 页果恶化。参与污水活性污泥处理的是以好氧呼吸的好氧菌为主体的微生物种群。这样,在曝气池内必须有足够的溶解氧。溶解氧不足,必将对微生物的生理活动产生不利影响,从而污水处理进程也必将受到影响,甚至遭到破坏。在活性污泥培养初始,由于污泥尚未形成,所以曝气时间相对要长,曝气量要小。待生物池污泥形成后浓度超过3500mg/L 即转入正常的周期进行培养,同时提高曝气量,缩短曝气时间。由于有脱氮除磷的要求所以在正常的培
26、养阶段池中的D0要保持在23mg/L。还应当指出,在曝气池内溶解氧不宜过高,溶解氧过高能够导致有机物分解过快,从而使微生物缺乏营养,活性污泥易于老化,结构松散。此外溶解氧过高,过量耗能,在经济上也是不适宜的。(3)温度在影响微生物生理活动的各项因素中,温度的作用非常重要。温度适宜能够促进、强化微生物的生理活动,温度不适宜,会减弱甚至破坏微生物的生理活动,还能导致微生物形态和生理特性的改变,甚至使微生物死亡。任何一种细菌都有一个最适生长温度,随温度上升,细菌生长加速但有一个最低和最高生长温度范围,一般为10 45 。 C,适宜温度为1535。C,此范围内温度变化对运行影响不大。(4)OH值微生物
27、的生理活动与环境的酸碱度密切相关,只有在适宜的酸碱度条件下,微生物才能进行正常的生理活动。一般pH为6585之间。在曝气池内保持微生物最佳pH 值范围是十分必要的。这是使活性污泥处理进程正常取得良好处理效果的一项必要条件。(5)SV30SV30,污泥沉降比,即混合液在量筒内静置30min 后所形成沉淀污泥的容积占原混合液容积的百分比,以表示。每次测试SV30都可以反映曝气池运行过程的活性污泥量,从而以控制、调节剩余污泥的排放量,还能及时地发现污泥膨胀等异常现象。通常情况下,沉降比宜保持在1530的范围内。絮体大小不同的污泥,其界面沉淀速度有很大差异,絮体大的污泥沉降较快,絮体小的污泥沉降慢。(
28、6)生物镜检生物镜检是活性污泥法污水处理厂重要的运行管理工作,目的就是随时掌握活性污泥生物相的状况以保证污水处理厂的正常运行。通过生物镜检,可以观察到活第 11 页 共 24 页性污泥丝状菌的状况,对于顶防活性污泥膨胀有着重要的意义。生物相观察包括两个部分:一是观察原生动物和后生动物等指示生物的数量及种类变化,不同质量的活性污泥中存在不同的指示生物,通过对指示生物的观察,可以间接评价活性污泥的质量;二是观察活性污泥中丝状茵的数量,不同质量的活性污泥中丝状茵的量不同,通过丝状菌数量的测量,也可以间接的反映活性污泥的质量。活性污泥生物相的观察是利用普通生物显微镜观察活性污泥中的指示生物,即原生动物
29、和后生动物,以判断和评价活性污泥的性质、细菌的活力等。活性污泥中的原生动物以细菌为摄食对象,在促进活性污泥的絮凝、澄清和提高出水水质方面有着重要的作用。出现在活性污泥中的原生动物。在种属上和数量上是随处理水的水质和细菌的状态变化而变化的,因此,原生动物可作为活性污泥系统的指示生物。生物池内的各时期的指示生物可以与该时期的水质相结合起来,判断水质的好坏。因为污泥培养的不同时期,其指示的微生物的种类是不相同的。因此,对于微生物的镜检是十分重要的,与出水的水质分析相辅相成,在污水处理的生化系统调试过程中是必不可少的检测内容。作为活性污泥处理系统的指示性生物的原生动物,在曝气池内活性污泥反应过程中,数
30、量与种类的增长与递变模式关系。后生动物(主要是轮虫)在活性污泥系统中不经常出现,仅在处理水质优异的完全氧化型的活性污泥系统中出现。因此,轮虫出现是水质非常稳定的标志。(7)污泥龄控制根据污泥龄的定义,活性污泥在曝气池内的停留时间,又称为生物固体平均停留时间,即曝气池内活性污泥总量与每日排放的污泥量之比。考虑到污水需要同时脱氮除磷,控制污泥龄为1220天。3.4 CASS 工艺主要运行参数确定 污水厂调试运行是在满负荷进水条件下,优化、摸索运行参数,取得最佳的去除效果,同时对工程整体质量进一步全面考核,为今后长期稳定运行奠定基础。此阶段大致包括以下几方面工作:滗水器控制参数的确定,CASS 池运
31、行周期及曝气、沉淀、排水、闲置时间的分配,污泥脱水过程中混凝剂的投加量等。 (1)滗水器控制参数的确定CASS 工艺的特点是程序工作制,可依据进、出水水质变化来调整工作程序,保证出水效果。滗水器是 CASS 工艺中的关键设备,污水厂采用的滗水器为丝杠套筒第 12 页 共 24 页式,通过电机的运动,带动丝杠上下移动,从而带动连接于丝杠末端的浮动式滗水堰,完成滗水过程。每次滗水阶段开始时,滗水器以事先设定的速度首先由原始位置降到水面,然后随水面缓慢下降,下降过程为:下降 10s,静止滗水 30s,再下降 10s,静止滗水 30s,如此循环运行直至设计排水最低水位,通过滗水器的堰式装置迅速、稳定、
32、均匀地将处理后的上清液排至排水井,滗水器下降速度与水位变化相当,排出的始终是最上层的上清液,不会扰动已沉淀的污泥层。滗水器上升过程是由低水位连续升至最高位置,即原始位置,上升时间通过调试摸索确定。滗水器在运行过程中设有限位开关,保证滗水器在安全行程内工作。调试工作主要是根据进出水水质及水量来探索滗水器的排水时间、滗水器最佳下降速度及排水结束后滗水器的上升时间。(2)CASS 池运行周期的确定原设计的 CASS 池运行周期是 4h,其中曝气 2h,沉淀 1h,排水 1h。调试过程中发现原水浓度比设计原水浓度低,有必要根据实际废水水质情况来确定运行周期,根据进出水水质指标适当调整周期中各阶段时间的
33、分配,如适当减少曝气时间、延长沉淀时间等,这样在保证出水水质的情况下节省了能耗。3.5 CASS 工艺主要设备的运行维护3.5.1 风机房1开机前检查:1)检查所有阀门处于正常工作状态。2)检查各风机油标内的润滑油是否充足,检查水冷系统是否完好。3)检查电气设备处于正常工作状体。2、开机步骤1)风机为多台设备连续切换运行间断休整的方式,即正常条件下,每台风机在连续运行 48-72 小时后必须切换休整 12-24 小时。2)风机严禁带压启动,每台风机启动前均应打开放空阀,然后才能启动风机,待风机运转正常后方可将放空阀缓慢关闭。3)风机关闭时,也应按上述要求进行,即先打开放空阀再关闭风机。4)风机
34、检查时,应严格观察其运转状态,不得有噪声和运转异常情况,一旦第 13 页 共 24 页发现,应停机检查,检修后方可重新运行。3、注意事项1)风机必须按说明书要求投加规定的润滑油,严禁无油或却油运行,否则将造成事故。2)必须定期进行巡视检查,一旦发现异常,必须停机检修。3)定期检查各轴承润滑油和水冷、风冷的管线系统,三个月进行一次检修。3.5.2 泵的操作1 运行管理第一、 根据进水量的变化及工艺运行情况,应调节水量,保证处理效果。第二、水泵在运行中,必须严格执行巡回检查制度,并符合下列规定:1) 应注意观察各种仪表显示是否正常、稳定。2) 轴承温升不得超过环境温度 35,总和温度最高不得超过7
35、5。3) 应检查水泵填料压盖处是否发热,滴水是否正常。4) 水泵机组不得有异常的噪音或震动。5) 水池水位应保持正常。第三、 应使泵房的机电设备保持良好状态。第四、 操作人员应保持泵站的清洁卫生,各种器具应摆放整齐。第五、应及时清除叶轮、闸阀、管道的赌塞物。2 安全操作第一、 水泵启动和运行时,操作人员不得接触转动部位。第二、当泵房突然断电或设备发生重大事故时,应打开事故排放口闸阀,将进水口处闸阀全部关闭,并及时向主管部门报告,不得擅自接通电源或修理设备。第三、 清洗泵房提升水池时,应根据实际情况,事先制订操作规程。第四、 操作人员在水泵开启至运行稳定后,方可离开。第五、 严禁频繁启动水泵。第
36、六、水泵运行中发现下列情况时,应立即停机:1 水泵发生断轴故障; 2 突然发生异常声响; 3 轴承温度过高;1 压第 14 页 共 24 页力表、电 流表的显示值过低或过高; 5 机房管线、闸阀发生大量漏水;6 电机发生严重故障。3维护保养第一、 应至少半年检查、调整、更换水泵进出口闸阀调料一次。第二、备用水泵应每月至少进行一次试运转。环境温度低于 0时,必须放掉泵壳内的存水。3.5.3 化学药品1化学药品投加废水处理工艺过程中需要投加的化学品有:营养盐、PAC、PAM等药剂。 营养盐投加尿素及磷肥作为营养盐,目的是为微生物提供合适的生长条件,满足微生物生长的需求。 PAC根据二沉池出水水质情
37、况在混凝沉淀池投加PAC,以便更好的絮凝沉淀细小悬浮物并降低废水的COD。设置PAC加药装置,计量投加系统。 PAM在混凝沉淀池、污泥脱水系统需要投加 PAM,以便更好的絮凝细小悬浮物或使污泥达到良好的脱水效果,设置 PAM 加药装置,计量投加。2.化学药品使用方法及注意事项1)PAC使用方法:将该产品(固体)与常温水按1/3的重量比边搅拌边投加,至完全溶解后再加水稀释至所需浓度,原水浓度100500mg/L时投加量为36mg/L,具体投加时应根据水质情况进行水试,选择最佳投加量而投加。注意事项:a. 产品应存放在室内干燥、通风、阴凉处,切勿受潮。b. 水处理剂聚合氯化铝产品有腐蚀性如不慎溅到
38、皮肤上要立即用水冲洗干净。c. 生产设备要密封,车间通风应良好。2)PAM使用方法:第 15 页 共 24 页使用前现将固体颗粒溶解成15浓度的水溶液,以便迅速发挥效力。在加药时,应采取渐次性加药方式,慢慢的投入水中,便之均匀的在水中溶解。阳离子型的较阴离子分子量偏低,因而粘度也较阴离子弱,故阳离子、非离子配比浓度较阴离子略高。建议浓度51%注意事项:a.配置PAM水溶液时,应在搪瓷、铝制或塑料桶内进行,不可在铁容器内储存和配置;b.溶解时应将产品均匀的慢慢的加入带搅拌和加热装置的溶解器中,避免结块,避免长时间过剧的机械剪贴,建议搅拌速度60200转/min,否则导致聚合物降解,影响使用效果;
39、c.PAM水溶液应做到现用现配,当溶解液长时间放置其性能将会视水质情况而逐渐降低;d.在对悬浊液添加絮凝剂水溶液之后,如果长时间剧烈的搅拌将会破坏已形成的絮凝物。、常见异常情况及解决方法1. 出水中 SS 增多,取泥样观察化验,发现污泥絮体细小,沉降性差,挥发性污泥比例降低。原因:曝气池污泥浓度太高,泥龄太长,或进水浓度太低,污泥内源代谢加剧、自身氧化分解,絮状污泥解体,沉降性差的细小无机污泥增多。解决方法:增加剩余污泥排量,降低曝气池污泥浓度,改善进水水质,必要时补充碳源。2. 泡沫、污泥发黑并且曝气池有臭味原因:泡沫分两种:一种是化学泡沫,另一种是生物泡沫。化学泡沫是污水中的洗涤剂和含表而
40、活性物质在曝气搅拌下形成的。在活性污泥培养初期,化学泡沫多,主要是因为此阶段活性污泥尚未形成,随着活性污泥增多,微生物对形成泡沫物质吸附与降解能力增强,化学泡沫会逐渐消失。生物泡沫呈褐色,是由诺卡氏菌形成的。第 16 页 共 24 页污泥发黑并且曝气池伴有臭味现象的出现说明供氧量不足,D0降低。解决方法:泡沫:在表面淋洒消泡剂或适当减小曝气量。常用的消泡剂有机油、煤油、硅油等。污泥发黑并且曝气池伴有臭味:增加供氧量,同时加大排泥。3. 其它操作条件相对变化不大,而曝气池中溶解氧剧烈升高, 控制风量也难以降低。原因:微生物对氧的利用剧降,可能是:PH 严重偏离正常范围, 毒物进入曝气池使污泥中毒,进水浓度非常低。解决方法:检查进水水质,查明原因,然后采取针对措施恢复。4. 其它操作条件相对变化不大,而曝气池中溶解氧持续低于设计值,增大风量也难以提高,氨氮降解效率降低。原因:曝气池中污泥浓度过高,进水浓度高。解决方法:降低污泥浓度,调整进水。5. 操作条件相对没有变化,出水水质突然恶化。原因:进水浓度、进水量严重超出设计范围,超过了微生物的降解能力,污泥回流不及时,曝气池污泥浓度太低。解决方法:查明原因,采取针对性措施如稳定进水水质、水量,及时回流污泥,增加曝气池污泥浓度等。