1、 1 / 132018 年高考数学(理科)考点解析一、考核目标与要求数学科高考注重考查中学数学的基础知识、基本技能、基本思想方法(所谓三基) ,考查空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识、创新意识(五种能力、两种意识) 。具体考试内容根据教育部颁布的普通高中数学课程标准(实验) 、教育部考试中心颁布的普通高等学校招生全国统一考试大纲(理科课程标准实验) 确定。关于考试内容的知识要求和能力要求的说明如下:1知识要求知识是指课程标准所规定的必修课程、选修课程中的数学概念、性质、法则、公式、公理、定理以及由其内容反映的数学思想方法,还包括按照一定程序与步骤进
2、行运算,处理数据、绘制图表等基本技能。各部分知识的整体要求及其定位参照课程标准相应模块的有关说明对知识的要求由低到高分为了解、理解、掌握三个层次(分别用 A、B、C 表示) ,且高一级的层次要求包含低一级的层次要求(1)了解(A):要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能(或会)在有关的问题中识别、认识它。“了解”层次所涉及的主要行为动词有:了解,知道、识别,模仿,会求、会解等。(2)理解(B):要求对所列知识内容有较深刻的理性的认识,知道知识间的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问
3、题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。“理解”层次所涉及的主要行为动词有:描述,说明,表达、表示,推测、想象,比较、判别、判断,初步应用等。(3)掌握(C):要求能够对所列的知识内容进行推导证明,能够利用所学知识对问题进行分析、研究、讨论,并且加以解决。“掌握”层次所涉及的主要行为动词有:掌握、导出、分析,推导、证明,研究、讨论、运用、解决问题等。2能力要求能力是指 空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力及应用意识和创新意识。(1)空间想象能力:能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中基本元素及其相互关系;能对图
4、形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质。(2)抽象概括能力:对具体的、生动的实例,在抽象概括的过程中,发现研究对象的本质;从给定的大量信息材料中,概括出一些结论,并能将其应用于解决问题或作出新的判断。(3)推理论证能力:会根据已知的事实和已获得的正确数学命题,论证某一数学命题的真实性的初步的推理能力推理既包括演绎推理,也包括合情推理;论证方法既包括按形式划分的演绎法和归纳法,也包括按思考方法划分的直接证法和间接证法一般运用合情推理进行猜想,再运用演绎推理进行证明。(4)运算求解能力:会根据法则、公式进行正确的运算、变形和数据处理,能根据问题的条件寻找与设计合理、简捷的运算
5、途径;能根据要求对数据进行估计和近似计算。(5)数据处理能力:会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断、解决给定的实际问题。数据处理能力主要依据统计中的方法对数据整理、分析,并解决给定实际问题。(6)应用意识:能综合应用所学数学知识、思想和方法解决问题,包括解决在相关学科、生产、生活中简单的数学问题;能理解对问题陈述的材料,并2 / 13对所提供的信息资料进行归纳、整理和分类,将实际问题抽象为数学问题;能应用相关的数学方法解决问题并加以验证,并能用数学语言正确地表达和说明.应用的主要过程是依据现实的生活背景,提炼相关的数量关系,将现实问题转化为数学问题,构造数
6、学模型,并加以解决。(7)创新意识:能发现问题、提出问题,综合与灵活地应用所学的数学知识、思想方法,选择有效的方法和手段分析信息,进行独立的思考、探索和研究,提出解决问题的思路,创造性地解决问题3个性品质要求个性品质是指考生个体的情感、态度和价值观.要求考生具有一定的数学视野,认识数学的科学价值和人文价值,崇尚数学的理性精神,形成审慎的思维习惯,体会数学的美学意义。就考试而言,要求考生克服紧张情绪,以平和的心态参加考试,合理支配考试时间,以实事求是的科学态度解答试题,树立战胜困难的信心,体现锲而不舍的精神。4考查要求数学学科的系统性和严密性决定了数学知识之间内在联系的深刻性,包括各部分知识的纵
7、向联系和横向联系,要善于从本质上抓住这些联系,进而通过分类、梳理、综合,构建数学试卷的框架结构(1)对数学基础知识的考查,既要全面又要突出重点,对于支撑学科知识体系的重点内容,要占有较大的比例,构成数学试卷的主体。考查应注重学科的内在联系和知识的综合性,不刻意追求知识的覆盖面。从学科的整体高度和思维价值的高度设计问题,在知识网络交汇点设计试题,使对数学基础知识的考查达到必要的深度。(2)对数学思想方法的考查,是对数学知识在更高层次上的抽象和概括的考查,考查时必然要与数学知识相结合,从数学学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧,从而反映考生对数学思想方法的掌握程度数学思想方法主
8、要包括:函数与方程、数形结合、分类与整合、化归与转化、特殊与一般、有限与无限,或然与必然等,其基本含义如下:函数与方程的思想:函数思想就是利用运动变化的观点分析和研究具体问题中的数量关系,通过函数的形式把这种数量关系表示出来并加以研究,从而使问题获解。方程思想是从问题的数量关系入手,运用数学语言将问题中的条件转化为方程问题,然后通过解方程(组)使问题获解。函数与方程的思想既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。数形结合的思想:数形结合的思想就是充分运用“数”的严谨和“形”的直观,将抽象的数学语言与直观的图形语言结合起来,使抽象
9、思维和形象思维结合,通过图形的描述、代数的论证来研究和解决数学问题的一种数学思想方法。数形结合思想是数学的规律性与灵活性的有机结合,通过“以形助数,以数辅形”,变抽象思维为形象思维,使复杂问题简单化,抽象问题具体化,有助于把握数学问题的本质,有利于达到优化解题的目的。分类与整合的思想:分类与整合就是当问题所给的对象不能进行统一研究时,就需要对研究对象按某个标准分类,然后对每一类分别研究得出每一类的结论,最后综合各类结果得到整个问题的解答。分类与整合就是“化整为零,各个击破,再积零为整”的数学思想。化归与转化的思想:化归与转化的思想是在研究和解决数学问题时采用某种方式,借助某些数学知识,将问题进
10、行等价转化,使抽象问题具体化,复杂问题简单化、未知问题已知化等,进而达到解决问题的数学思想。特殊与一般的思想:特殊与一般的思想就是通过对问题的特殊情形(如特殊函数、特殊数列、特殊点、特殊位置、特殊值、特殊方程等)的解决,寻求一般的、抽象的、运动变化的、不确定的等问题的解决思路和方法的数学思想。有限与无限的思想:有限与无限的思想就是通过对有限情形的研究和解决,使无限情形的问题得以解决;反之当积累了解决无限问题的经验之后,也可3 / 13以将有限问题转化成无限问题来解决,即无限化有限,有限化无限的解决问题的数学思想数学方法主要包括归纳推理、类比推理、演绎推理、综合法、分析法、反证法等,其基本含义如
11、下:归纳推理:归纳推理就是从个别事实中推演出一般性的结论,依据特殊现象推断出一般现象,从己知的特殊的相同性质中推出一个明确表述的一般性命题等的推理简言之,归纳推理是由特殊到一般的推理。类比推理:由两类对象具有某些类似特征和其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理简言之,类比推理是由特殊到特殊的推理。演绎推理:演绎推理是由一般性的命题推出特殊性命题的一种推理模式,是一种必然性推理演绎推理的主要形式,就是由大前提、小前提推出结论的三段论式推理。综合法:综合法就是利用已知条件和数学定义、公理、定理等,经过一系列的推理论证,最后推导出所要证明的结论成立的证明方法即 1
12、23PQQ(其中 表示己知条件, 表示结论)综合法是“执因导果”,从已知出发,顺着推理,逐渐地靠近结论。n P分析法:分析法就是从结论出发,逐步寻求使它成立的充分条件直至最后,把要证明的结论归结为判定一个明显成立的条件(已知条件、定义、定理、公理等)的证明方法即 得到一个明显成立的条件 。分析法是“执果索123P因”,从要证的结论出发,倒着分析,逐渐地靠近已知。反证法:反证法就是假设原命题不成立,经过正确的推理,得出矛盾,因此说明假设错误,从而证明了原命题成立的证明方法它是从反面的角度思考问题的证明方法,即肯定题设而否定结论,从而导出矛盾推理而得,主要步骤是:否定结论一推导出矛盾一结论成立。(
13、3)对数学能力的考查,就是以数学知识为载体,从问题入手,把握学科的整体意义,用统一的数学观点组织材料,体现对考生各种数学能力的要求高考的数学命题,强调“以能力立意”,侧重体现对知识的理解和应用,尤其是综合和灵活的应用,以此来检测考生将知识迁移到不同情境中去的能力,从而检测出考生个体理性思维的广度和深度以及进一步学习的潜能能力的考查以推理论证能力和抽象概括能力的考查为核心,全面涉及各种数学能力,并要切合考生实际,强调其科学性、严谨性、抽象性,强调探究性、综合性和应用性。对空间想象能力的考查主要体现在对文字语言、符号语言及图形语言的互相转化上;对运算求解能力的考查主要是对算法和推理的考查,考查以代
14、数运算为主;对数据处理能力的考查主要是考查运用概率统计的基本方法和思想解决实际问题的能力对应用意识的考查主要采用解决应用问题的形式应用问题的命题要坚持“贴近生活,背景公平,控制难度”的原则,试题设计要充分考虑中学数学教学的实际和考生的年龄特点,并结合考生具有的实践经验,使数学应用问题的难度符合考生的实际水平对创新意识的考查是对高层次理性思维的考查在考试中通过创设新颖的问题情境,构造有一定深度和广度的数学问题进行考查。试题设计要注重问题的多样化,体现思维的发散性,着眼数学主体内容、体现数学素质;试题主要以反映数、形运动变化及其相互联系的问题出现,主要为研究型、探索型、开放型等类型的问题数学学科的
15、命题,在考查基础知识的基础上,注重对数学思想方法的考查,注重对数学能力的考查,展现数学的科学价值和人文价值,同时兼顾试题的基础性、综合性和现实性,重视试题间的层次性,合理调控综合程度,坚持多角度、多层次的考查,努力体现对考生综合数学素养和数学学习现状及潜能的考查4 / 13二、考试形式与试卷结构试题难度: 试题按其难度分为容易题、中等难度题和难题难度在 0.7 以上的试题为容易题,难度为 0.40.7 的试题是中等难度题,难度在 0.4 以下的试题为难题试卷由三种难度的试题组成,并以中等难度题为主命题时根据有关要求和教学实际合理控制三种难度试题的分值比例(大致控制在 3:5:2)及全卷总体难度
16、理科数学高考知识要点统计表要求层次 全国卷统计 月考 成都诊断性考试 备注考试内容 了解理解掌握2015 年2016 年2017 年9月10月11月12月1月2月3月4月5月零诊一诊二诊三诊1.集合的概念 2.集合的表示方法 3.集合间的基本关系 (一)集合4.集合的基本运算 5.命题的概念 6.“若 p,则 q”形式的命题及其逆命题、否命题与逆否命题 7.四种命题的相互关系 8 充分条件、必要条件与充要条件 9.简单的逻辑联结词 一、集合与常用逻辑用语(二)常用逻辑用语10.全称量词与存在量词 11.函数的概念 12.映射的概念 13.函数的表示 14.单调性、最大(小)值及其几何意义 15
17、.二次函数的图像及其性质 16.函数的奇偶性 二、函数概念与指数(三)函数17.运用函数图象理解和研究函 5 / 13数性质18.有理指数幂的概念 19.实数指数幂的意义 20.幂的运算 (四)指数函数21.指数函数的概念、图象及其性质 22.对数的概念 23.对数的运算性质 24.对数换底公式 25.对数函数的概念、图象及其性质 (五)对数函数26.指数函数与对数函数互为反函数 27.幂函数的概念 (六)幂函数28.简单幂函数(y=x,y=x 2,y=x 3,y=x -1,y=x 1/2) 29.实系数一元二次方程根的分布 30.函数的零点及其与方程的根 31.二分法 函数、对数函数、幂函数
18、(七)函数的应用32.函数模型的应用 33.任意角和弧度制 34.任意角的正弦、余弦、正切的定义 35.单位圆中的三角函数线及其应用 三、三角函数、三(八)任意角的三角函数36.诱导公式 6 / 1337.同角三角函数的基本关系式 38.周期函数的定义 39.函数y=sinx,y=cosx,y=tanx 的图象和性质 40.函数 y=Asin( x+)的图象 (九)三角函数的图像与性质41.三角函数的简单应用 42.两角和与差的正弦、余弦、正切公式 43.二倍角的正弦、余弦、正切公式 (十)三角恒等变换44.简单的三角恒等变换 45.正弦定理、余弦定理 角恒等变化、解三角形(十一)解三角形 4
19、6.正、余弦定理的简单应用 47.数列的概念 48.数列表示法 (十二)数列的概念及其表示 49.数列与函数的关系 50.等差数列的概念 51.等比数列的概念 52.等差数列的通项公式与前 n项和公式 53.等比数列的通项公式与前 n项和公式 四、数列 (十三)等差数列、等比数列54.等差数列、等比数列的简单应用 五、 (十四)不等式与 55.不等式的性质 7 / 13不等关系56.一元二次不等式与相应二次函数、一元二次方程的联系 (十五)一元二次不等式 57.一元二次不等式的解法 58.二元一次不等式组表示的平面区域 (十六)简单的线性规划 59.简单的二元线性规划问题 不等式(十七)基本不
20、等式60.基本不等式(a+b)/2(ab)1/2(a,b0)及其应用 61.导数的概念 (十八)导数概念及其几何意义62.导数的几何意义 63.常见基本初等y=c,y=x ,y=sinx,y =cosx,y=ex,y=a x,y=lnx,y =logax(a0,a1)的导数 64.导数的四则运算法则 (十九)导数的运算65.简单的复合函数(仅限于形如 f(ax+b))的导数 66.函数的单调性与导数 六、导数及其应用 (二十)导数在研究函数中的应用67.函数的极值、最大(小)值与导数 七、数(二十一)复数的概68.复数的基本概念及复数相等的充要条件 8 / 1369.复数的代数表示法及几何意义
21、 70.复数代数形式的四则运算 系扩充与复数的引入念与运算71.复数代数形式加减法的几何意义 72.平面向量的概念、平面向量相等的含义 (二十二)平面向量73.平面向量的几何表示 74.平面向量的线性运算及其几何意义 (二十三)向量的线性运算 75.平面向量共线的条件 76.平面向量的基本定理 77.平面向量的正交分解及其坐标表示 78.平面向量线性运算的坐标表示 (二十四)平面向量的基本定理及坐标表示 79.平面向量共线的坐标表示 80.平面向量数量积及其物理意义 81.平面向量数量积与向量投影的关系 82.平面向量数量积的坐标表示 83.平面向量数量积的运算 八、平面向量(二十五)平面向量
22、的数量积84.两个平面向量的夹角的数量 9 / 13积表示(二十六)平面向量的应用85.平面向量的简单应用 86.柱、锥、台、球及其简单组合体的结构特征 87.简单空间图形的三视图 88.简单空间图形的直观图 (二十七)空间几何体 89.柱、锥、台、球的表面积和体积 90.空间线、面的位置关系 91.公理 1、公理 2、公理 3、公理 4、定理 92.空间线、面平行或垂直的判定 93.空间线、面平行或垂直的性质 94.异面直线所成的角、直线与平面所成的角、二面角的概念 九、立体几何初步(二十八)点、直线、平面间的位置关系95.空间图形的位置关系的简单命题的证明 96.空间直角坐标系 (二十九)
23、空间直角坐标系 97.空间两点间的距离公式 98.空间向量的概念 99.空间向量基本定理及其意义 十、空间向量与立(三十)空间向量及其运算 100.空间向量的正交分解及其坐标表示 10 / 13101.空间向量的线性运算及其坐标表示 102.空间向量的数量积及其坐标表示 103.用的数量积判断空间向量的共线与垂直 104.直线的方向向量及平面的法向量 105.空间线面平行与垂直关系的证明 体几何(三十一)空间向量的应用 106.空间线线、线面、面面的夹角计算 107.直线的倾斜角和斜率 108.过两点的直线斜率的计算 109.两条直线平行或垂直的判定 110.直线方程的点斜式、两点式及一般式
24、111.两条相交直线的交点坐标 112.两点间的距离公式、点到直线的距离公式 (三十二)直线与方程113.两条平行线间的距离 114.圆的标准方程与一般方程 115.直线与圆的位置关系 116.两圆的位置关系 十一、平面解析几何初步 (三十三)圆与方程 117.用直线和圆的方程解决简单的问题 十二、(三十四)圆锥曲线118.椭圆的定义及标准方程及简单几何性质 11 / 13119.双曲线的定义及标准方程及简单几何性质 120.抛物线的定义及标准方程及简单几何性质 121.直线与圆锥曲线的位置关系及其简单应用 圆锥曲线与方程 (三十五)曲线与方程122.曲线与方程的概念及对应关系 123.算法的
25、概念 (三十六)算法及其程序框图124.程序框图的三种基本逻辑结构 十三、算法初步(三十七)基本算法语句125.输入语句、输出语句、赋值语句、条件语句、循环语句 126.分类加法计数原理、分步乘法计数原理 (三十八)加法原理、乘法原理 127.分类加法计数原理或分步乘法计数原理的简单应用 128.排列、组合的概念 129.排列数公式、组合数公式 (三十九)排列与组合 130 排列与组合的简单应用 十四、计数原理 (四十)二项式定理131 二项式定理及其简单应用 132.简单随机抽样 (四十一)随机抽样 133.分层抽样和系统抽样 十五、统 (四十二) 134.概率分布表、直方图、折线 12 /
26、 13图、茎叶图.135.样本数据的基本的数字特征(众数、中位数、平均数、方差、标准差等) 用样本估计总体136.用样本估计总体分布和数字特征 137.散点图 计(四十三)变量的相关性 138.线性回归方程 常见统计方法 独立性检验(2*2 列联表) 统计案例案例分析回归分析 139.随机事件的概率 (四十四)事件与概率140.两个互斥事件的概率加法公式 141.古典概型 十六、概率(四十五)古典概型、几何概型142.几何概型 143.取有限值的离散型随机变量及其分布列 144.超几何分布 145.条件概率 146.事件的独立性 147.n 次独立重复试验与二项分布 十七、概率与统计(四十六)概率148.取有限值的离散型随机变量 13 / 13的均值圆周角定理,切线判定、性质定理 相交弦定理,圆内接四边形性质与判定切割线定理 坐标系作用,直角坐标系下伸缩变换 坐标系直角坐标与极坐标互化 柱坐标系,球坐标系 参数,参数方程 参数方程圆和圆锥曲线参数方程 直线参数方程 摆线、渐开线 绝对值不等式及几何意义 坐标系与参数方程绝对值不等式绝对值不等式的解法 柯西不等式的几种(向量、代数、三角)形式及几何意义 柯西不等 式排序不等式 数学归纳法原理及其使用 数学归纳法 贝努力不等式 比较法、综合法、分析法、反证法、放缩法 不等式证明不等式选讲