1、反比例函数知识点总结知识点 1 反比例函数的定义一般地,形如 (k 为常数, )的函数称为反比例函数,它可以从以下几个xy0方面来理解:x 是自变量,y 是 x 的反比例函数;自变量 x 的取值范围是 的一切实数,函数值的取值范围是 ;0y比例系数 是反比例函数定义的一个重要组成部分;0k反比例函数有三种表达式: ( ) ,xy ( ) ,1k0 (定值) ( ) ;k函数 ( )与 ( )是等价的,所以当 y 是 x 的反比例函数xy0yx0k时,x 也是 y 的反比例函数。(k 为常数, )是反比例函数的一部分,当 k=0 时, ,就不是反比例函 xk数了,由于反比例函数 ( )中,只有一
2、个待定系数,因此,只要一组对应值,xk0就可以求出 k 的值,从而确定反比例函数的表达式。知识点 2 用待定系数法求反比例函数的解析式由于反比例函数 ( )中,只有一个待定系数,因此,只要一组对应值,yk就可以求出 k 的值,从而确定反比例函数的表达式。知识点 3 反比例函数的图像及画法反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、第三象限或第二、第四象限,它们与原点对称,由于反比例函数中自变量函数中自变量 ,函数0x值 ,所以它的图像与 x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,0y但永远达不到坐标轴。反比例的画法分三个步骤:列表;描点;连线。再作反比例函
3、数的图像时应注意以下几点:列表时选取的数值宜对称选取;列表时选取的数值越多,画的图像越精确;连线时,必须根据自变量大小从左至右(或从右至左)用光滑的曲线连接,切忌画成折线;画图像时,它的两个分支应全部画出,但切忌将图像与坐标轴相交。知识点 4 反比例函数的性质关于反比例函数的性质,主要研究它的图像的位置及函数值的增减情况,如下表:反比例函数 ( )xky0的k符号 0k图像性质 的取值范围是x,y 的取值范围0是当 时,函数图k像的两个分支分别在第一、第三象限,在每个象限内,y 随 x 的增大而减小。 的取值范围是x,y 的取值范围0是当 时,函数图k像的两个分支分别在第二、第四象限,在每个象
4、限内,y 随 x 的增大而增大。注意:描述函数值的增减情况时,必须指出“在每个象限内”否则,笼统地说,当时,y 随 x 的增大而减小“,就会与事实不符的矛盾。0k反比例函数图像的位置和函数的增减性,是有反比例函数系数 k 的符号决定的,反过来,由反比例函数图像(双曲线)的位置和函数的增减性,也可以推断出 k 的符号。如在第一、第三象限,则可知 。0k反比例函数 ( )中比例系数 k 的绝对值 的几何意义。xky如图所示,过双曲线上任一点 P(x,y)分别作 x 轴、y 轴的垂线,E、F 分别为垂足,则 OEFSF矩 形k反比例函数 ( )中, 越大,双曲线 越远离坐标原点; 越小,ky0kkk双曲线 越靠近坐标原点。x双曲线是中心对称图形,对称中心是坐标原点;双曲线又是轴对称图形,对称轴是直线 y=x 和直线 y=x。