收藏 分享(赏)

运用平方差公式分解因式.doc.doc

上传人:微传9988 文档编号:2544076 上传时间:2018-09-21 格式:DOC 页数:4 大小:110KB
下载 相关 举报
运用平方差公式分解因式.doc.doc_第1页
第1页 / 共4页
运用平方差公式分解因式.doc.doc_第2页
第2页 / 共4页
运用平方差公式分解因式.doc.doc_第3页
第3页 / 共4页
运用平方差公式分解因式.doc.doc_第4页
第4页 / 共4页
亲,该文档总共4页,全部预览完了,如果喜欢就下载吧!
资源描述

1、年 级 八 年 级 课 题 运用平方差公式分解因式 课 型 新 授教 学 媒 体 多 媒 体知 识技 能1.了解运用公式法分解因式的意义.2.知道提公因式法是分解因式的首先考虑的方法,再考虑用平方差公式分解因式.3.分解因式要分解到不能再分解为止.过 程方 法1.通过对平方差公式特点的辨析,培养学生的观察能力.2.训练学生对平方差公式的运用能力教学目标 情 感态 度在引导学生逆用乘法公式的过程中,培养学生逆向思维的意识,同时让学生了解换元的思想方法.教 学 重 点 掌握运用平方差公式分解因式.教 学 难 点 灵活运用平方差公式,解决实际问题教 学 过 程 设 计教 学 程 序 及 教 学 内

2、容 师 生 行 为 设 计 意 图一、 复习旧知1 提问:1、(a+b)(a-b)= 用语言叙述为 二、探究新知1探索练习“数学来源于生活,也应用于生活”双休日,装潢师傅出了这样一道题:要在一个边长为 的正方形12.75cm纸板内,割去一个边长为 的正方形,剩余部分的面7.5c积是多少?不使用计算器,你能计算出来吗?我是这样解的: 21 7575.220.cm根据上面的计算,思考下面的问题:(1)由到属于 ;应用了 公式;教师引导学生回顾,学生积极回答.教师提出问题,学生认真思考大胆回答。学生思考回答问题弄懂整式乘法中的平方差公式与因式分解中的平方差公式的联系与区别通 过 复 习上 节 课 所

3、学 的 平方差公式内 容 ,为 探 索 用平方差公式分解因式做准 备 。通过情境,引出新知识,激发学生学习兴趣,学生理解在乘法公式中,平方差是指计算的结果,在分解因式时,平方差是指要分解的多项式。教 学 程 序 及 教 学 内 容 师 生 行 为 设 计 意 图(2)由到属于 ;逆用了 公式;(3)由因式分解和整式乘法的互逆关系,类比猜想因式分解中的平方差公式是: .(4)运用平方差公式分解因式的多项式特征是: 2.把乘法公式(a+b)(ab)=a 2b 2 反过来得:a 2b 2=(a+b)(ab) 我们可以运用这个公式对某些多项式进行分解因式。这种方法叫运用平方差公式进行因式分解。例 1

4、下列多项式可以用平方差公式分解吗?(1)x 2y 2 (2)x 2+y2 (3)x 2y 2 (4)x 2+y2 (5)64a 2 (6)4x 29y 2 例 2 把下列多项式分解因式:(1) 3625x 2 (2) 16a29b 2 (3) 38a(4) x4-y4分析:观察是否符合平方差公式的形式,应引导学生把36、25x 2、16a 2、9b 2 改写成 62、(5x) 2、(4a) 2 和(3b) 2 形式,能否准确的改写是本题的关键.(3)先提取公因式.(4)分解因式要彻底。解:(1)3625x 2=62(5x) 2=(6+5x)(65x)(2) 16a29b 2=(4a)2(3b)

5、 2=(4a+3b)(4a3b)(3) =2a(a2-4)=2a(a+2)(a-2)38a例 3 把下列多项式分解因式: (x+p) 2(x+q) 2 9(a+b) 24(ab) 2 分析:在这里,尤其要重视对运用平方差公式前的多项式观察和心算,而后是进行变形。这一点在这儿尤为重要。解: (x+p)2(x+q) 2学生总结平方差公式的结构特征:口诀 : 平方差,有两项;首平方,末平方;符号相反要记清;分解化为和与差学生独立思考,然后集体对话、交流,深化对平方差公式结构特征的理解学生思考:(1)在什么情况下可以用平方差公式分解因式?(2)运用平方差公式分解因式的步骤是什么?(3)易犯什么错误?(

6、4)分解因式的顺序是什么?(5)应注意的问题是什么?师生共同总结平方差公式的特点:1.左边特征是:二项式,每项都是平方的形式,两项的符号相反。让学生在与同伴交流中思考、感悟,使学生内心产生解决问题的欲望,从而进一步上升到理性认识。这种设计更符合学生从“特殊到一般” 、从“具体到抽象”的认知特点。说明: (1)对于多项式中的两部分不是明显的平方形式,应先变形为平方形式,再运用公式分解,以免出现16a29b 2=(16a+9b)(16a9b)的错误。(2)在此还要提醒防止出现分解后又乘开的现象,这是旧知识的“倒摄作用”所引起的现象。=(x+p)+(x+q)(x+p)(x+q) 教 学 程 序 及

7、教 学 内 容2.右边特征是:两个师 生 行 为设 计 意 图=(2x+p+q)(p q)9(a+b)24(a b)2 =3(a+b)22(ab) 2=3(a+b)+2(ab) 3(a+b)2(ab)=(5a+b)(a+5b)三、课堂训练1.下列分解因式是否正确:(1)x 2y 2=(x+y)(xy)(2)925a 2=(3+25a)(3+25b)(3)4a 2+9b2=(2a+3b)(2a3b)2.把下列各式分解因式:(1) 36x 2 (2) b2 +a2 (3) x416y 491(4) x2y2z 2 (5) (x+2)29 (6)(x+a) 2(y+b) 2(7)25(a+b) 24

8、(a b) 2 3.在边长为 16.4cm 的正方形纸片的四角各剪去一边长为 1.8cm 的正方形,求余下的纸片的面积。4.已知 x2y 2=1 , x+y= ,求2xy 的值。四、小结归纳1.明确分解因式的顺序是:先提公因式,再用公式法 分解因式必须到不能再分解为止2.运用平方差公式分解因式的步骤:先写成平方的形式;再写成和与差的积五、作业设计1 计算: 2 28ba教 学 程 序 及 教 学 内 容二项式的积,一个是左边两项的底数之和,另一个是这两个底数之差。学生认真思考,教师加以点拨。学生在做练习题时,不要鼓励他们直接套用公式,而应让学生理解每一步的运算理由。学生通过练习巩固刚刚学习的新

9、知识。在此基础上加深知识的应用.学生做题,教师纠正讲解。学生总结,教师强调。师 生 行 为设计本题的目的是让学生加深平方差公式中的a、b 不仅可以表示数字、单项式,也可以是多项式,进一步渗透整体、换元的思想。加强学生对要分解的多项式结构特征的认识,分析各项与公式中字母的对应关系,在反复练习中掌握用平方差公式法进行分解因式让学生正确运用平方差公式法进行分解因式,对所学知识心中有数。设 计 意 图 362m 4981yx 25 2)()(yx 2916ba2见课本习题板 书 设 计15.4.2 用平方差公式分解因式1、平方差公式与因式分解中的平方差公式的联系与区别 3、例题讲解2、运用平方差公式分解因式的步骤 4、学生练习教 学 反 思

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 教育范文

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报