收藏 分享(赏)

第23章-旋转复习课件-示范课.ppt

上传人:无敌 文档编号:25319 上传时间:2018-03-04 格式:PPT 页数:24 大小:711KB
下载 相关 举报
第23章-旋转复习课件-示范课.ppt_第1页
第1页 / 共24页
第23章-旋转复习课件-示范课.ppt_第2页
第2页 / 共24页
第23章-旋转复习课件-示范课.ppt_第3页
第3页 / 共24页
第23章-旋转复习课件-示范课.ppt_第4页
第4页 / 共24页
第23章-旋转复习课件-示范课.ppt_第5页
第5页 / 共24页
点击查看更多>>
资源描述

1、第二十三章 旋转复习,一.本章知识结构图,(一)图形的旋转1旋转的定义: 在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形变换称为图形的旋转,这个定点称为旋转中心,转动的角称为旋转角.注意:在旋转过程中保持不动的点是旋转中心,2旋转的三个要素:,旋转中心、旋转的角度和旋转方向.,3旋转的性质:,(1)对应点到旋转中心的距离相等;,(2)对应点与旋转中心所连线段的夹角等于旋转角;,(3)旋转前后的图形全等.,例1.台风“麦莎”过去后,许多大树被大风刮倒吹折.一棵笔直的大树被风吹折后倒地,折断点为B(B点离地面为树高的 处).求B的度数.,例2如图,RtABC中,C90,ABC60

2、,ABC以点C为中心旋转到ABC的位置,使B在斜边AB上,AC与AB相交于D,试确定BDC的度数,解:ABC是由ABC旋转所得,BABC60,BCBC,BBC是等边三角形,BCB60.BCD90-6030,BDC180- (6030)180-9090,4简单图形的旋转作图:,(1)确定旋转中心;,(2)确定图形中的关键点;,(3)将关键点沿指定的方向旋转指定的角度;,(4)连结各点,得到原图形旋转后的图形.,例3 把AOB绕点O逆时针方向旋转90,画出旋转后的图形,错解:旋转时,把AOB看作90进行了旋转,正解:按逆时针方向把OA旋转到OA,使AOA90,把OB旋转到OB,使BOB90,如图,

3、例3 把AOB绕点O逆时针方向旋转90,画出旋转后的图形,(二)中心对称1中心对称图形与对称中心:,在平面内,某一图形绕某一点旋转180后能与原来的图形完全重合,那么这个图形叫做中心对称图形,这个点叫做对称中心.,了解平行四边形、圆是中心对称图形.,例4下列图形中,中心对称图形是(),答案:B,例5下列图形中,既是中心对称又是轴对称的图形是( ),答案:C,找一找,2中心对称和对称中心:,把一个图形绕着某一点旋转180后,如果它能和另一个图形完全重合,那么称这两个图形成中心对称或关于这个点对称,这个点叫做对称中心.这两个图形中的对应点,叫做关于中心的对称点.,3中心对称和中心对称图形的关系:,

4、如果将中心对称的两个图形看成一个整体(一个图形),那么这个图形就是中心对称图形;一个中心对称图形,也可以看成是关于中心对称的两个图形,4中心对称的特征:,成中心对称的两个图形中,连结对称点的线段都经过对称中心,并且都被对称中心平分;反之,如果两个图形的对应点连成的线段都经过某一点,并且都被该点平分,那么这两个图形一定关于这一点成中心对称.,5对称中心的确定:,将其中的两个关键点和它们的对称点的连线作出来,两条连线的交点就是对称中心.,6关于中心对称的作图:,(1)确定对称中心;(2)确定关键点;(3)作关键点的关于对称中心的 对称点;(4)连结各点,得到所需图形.,7、关于原点对称的点的坐标:

5、(a,b)关于原点的对称点是 (-a,-b)例6、点P(-1,3)关于原点对称的点的坐标是 ; 点P(-1,3)绕着原点顺时针旋转90o与P重合,则P的坐标为 ;,(1,- 3),(3,1),例7如图,如果四边形CDEF旋转后能与正方形ABCD重合,那么图形所在的平面上可以作为旋转中心的点共有几个?,可以作为旋转中心的点有3个,即:点D、点C和线段CD的中点.,例8.有甲、乙两棵“小树”,你能对甲“树”进行适当的操作,将它与乙“树”重合吗?说说你的操作过程.,解:可以先将甲“树”绕图上的A点旋转,使得甲“树”被“扶直”,然后,再沿AB方向将所得“树”平移到B点位置,即可与乙树重合(如图2).

6、本题将旋转与平移相结合.,例9边长为4的正方形ABCD的对称中心是坐标原点O,ABx轴,BCy轴, 反比例函数与的图象均与正方形ABCD的边相交,则图中的阴影部分的面积是( ) A、2 B、4 C、8 D、6,答案:C,旋转的应用:,例10已知E、F分别在正方形ABCD边AB和BC上,AB=1,EDF=45.求BEF的周长.,解:ABCD是正方形,ADC=90,AD=DC=AB=BC=1.,将ADE绕着点D逆时针旋转90到DCM的位置.由旋转的特征可知AE=CM,DE=DM,ADE=CDMEDF=45,,FDM=45DEF与DMF关于DF成轴对称,EF=FM,BEF的周长=BE+EF+BF=B

7、E+(FC+CM)+BF=BE+FC+AE+BF=(BE+AE)+(FC+BF)=BA+BC=2,所以BEF的周长为2,例11如图,水渠旁有一大块L形耕地,要画一条直线为分界线,把耕地平均分成两块,分别承包给两个人,BC边是灌溉用的水渠的一岸.每块土地都要有水渠,怎么平分土地才能满足每个人的需要?,谢谢各位,再见!,解:HG=HB,证法1:连结AH,四边形ABCD,AEFG都是正方形B=G=90 由题意知AG=AB,又AH=AHRtAGHRtABH(HL),HG=HB.,解:HG=HB,证法2:连结BG,四边形ABCD,AEFG都是正方形ABC=AGF=90 由题意知AG=AB,AGB=ABG,HGB=HBGHG=HB.,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 职业教育

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报