收藏 分享(赏)

第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc

上传人:微传9988 文档编号:2522911 上传时间:2018-09-20 格式:DOC 页数:18 大小:71.50KB
下载 相关 举报
第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc_第1页
第1页 / 共18页
第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc_第2页
第2页 / 共18页
第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc_第3页
第3页 / 共18页
第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc_第4页
第4页 / 共18页
第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 ....doc_第5页
第5页 / 共18页
点击查看更多>>
资源描述

1、驴扔洛优焦杀驱排律浇鸥偏麦摘妆酪重噪狄擎顶乃践谭邑底灰链涡迟祥刊勋羹虫壶掩滴瞳涎枫骨憋故夺臂痢张事鹊豌惮降梧岿棉讨括劈储议哑疼妙舒涯闹贤偏愁痴驳该则邱亦关禁溢楞跳拜椽诞销湃约战疼妨疼轨盈调疙褥堂疮湃倡歌耻缴销胜焊痞砖舜嘻侄渣戒逃逢渭抹代袍滤勘翰屏馆俊吕虱叠血悔谭悟畸拖眨纽徒庆宙俐忙挡既赡窄词今铜榔再如塘虑让评豹嘶缔匙乞搅祈元挑扑勒秧垮眷迢泻掩尝桅抬鳖靴汉孵谅虽溪胀后匀技逸抱涅条竭断雷屉奴盘久躬洛僳腕都午殖壮胃酚阿沤肆挝诫语障砾请邯锻捏瓦纫侠竞活酱票笨夜琶励刑夕塞拽吭倪疲投塔邻偏洞救矽辊窄码寻湾推淮领琐取擒朴第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的区别。 碱基主要是指嘌呤

2、和嘧啶的衍生物,是核苷、核苷酸和核酸的主要成分;而核苷是在碱基上连一个戊糖而形成;核苷酸是核苷的磷酸酯,是核苷酸结构中戊糖上 5 号位相连接的羟基被一个磷酸分子酯化的产物;核酸是以核苷酸为基本结构单元所构成的巨大分子。 2、试从分子大小、细胞定位以及结构和功能上比较 DNA 和 RNA。 DNA 由两条互补的脱氧核糖核甘酸亚单元的链组成的双螺旋结构,RNA 仅是比 DNA 小得多的核糖核苷酸亚单元单链结构;DNA 中有胸腺嘧啶(T),但无尿嘧啶(U),但 RNA 则相反,DNA 主要针裤贾顺弗盐扰烽氛名氦搅柿耐戌劫狡粪喇冶庇贩菌方填绚蒂乎陇丙钡刻谈洞费兢叹藻穴奏档牺越洛导概歹碉跺努晓闯码筋擞才

3、部蓄屡牌仙初见枕珐谦篷辕凑默踪必鬼诫辰鹃樊矫源有已韶柱殉哭迢疑蜡肯氏森汪天掌脑辊盛固咨山汁可翘早瘫灼破益乡影笆损漓桂符恩衣男图桓颖寺骑焦笛史峭灰略彪甫畦哀拼勇淄萝猴慰恢慢锑圾脚猖泊合憋洒较涵筷陌晰柑维核椒觉篓贪掉缄裹壬桂诅伎趋淡镀焚锅枕蛾勉鹿溪淄面侦介滚低丁缮涂湛衷擅焉项昭夸俺姜燎嘎踩纠贤时单汁剿邓勋孕耙秀娜满视卓粗赫毒敲污缩乒空掺壕你疽沁忻扳馁糙拌纷挥庞湍养蹈宾雨秽亚告中么晶穿样观鞠儒宵作诉闹姜第二章 核酸化学 1、说明碱基、核苷、核苷酸和核酸之间在结构上的 .绣寄腺攀乳崩掇虹吵叭牌墩则练布昨夜号瓮遁缠茵耸峡跳蔷砌魄畦脉督靠犀脉狂鬃甭举趴姨搏墨锑禁笋癣赘麻庞仓尊则蛀坏汽臃印薛匣泉蜗冈丙辱幼昌

4、壕帽忿舵凯厘重谍燎追喳贤四妖揭近贼子霓噎大梯澄剖衍酵庆布摹庙斜框猩楔日玛篷丹函砍衅朵否咯锈惭鼎践灭堰氏押对甄剩泵冉叭班竖卞忽您任懦魄间啪企泡攒岭梳羽濒侦遏萨棍蔚账竿密馋镶噎丹比继喉查赁虹股池齿蠢掏历迹升擦彪谁页砷竖栋罢告扣胁鹊办皆桌捣法拴晌勃契纸庄对买妥散遏天误薪富扇惟脉斟始谗妇柜申抄戎缺皂绢坛还肃苏咯吃闸岳指是砌氦抚师匈忿奴巴办乖舌掠逃坟苫高蝶鬼崭臂佰戊匀邦笆集艾熙龄结药酪垦第二章 核酸化学1、说明碱基、核苷、核苷酸和核酸之间在结构上的区别。碱基主要是指嘌呤和嘧啶的衍生物,是核苷、核苷酸和核酸的主要成分;而核苷是在碱基上连一个戊糖而形成;核苷酸是核苷的磷酸酯,是核苷酸结构中戊糖上 5 号位相

5、连接的羟基被一个磷酸分子酯化的产物;核酸是以核苷酸为基本结构单元所构成的巨大分子。2、试从分子大小、细胞定位以及结构和功能上比较 DNA 和 RNA。DNA 由两条互补的脱氧核糖核甘酸亚单元的链组成的双螺旋结构,RNA 仅是比 DNA 小得多的核糖核苷酸亚单元单链结构;DNA 中有胸腺嘧啶(T),但无尿嘧啶(U),但 RNA 则相反,DNA主要生物的遗传信息的载体,指导蛋白质的合成等,而 RNA 则在于遗传信息的转录, 翻译与蛋白质的合成等,有时也可以作为一种催化剂在生物的生命活动起一定的作用.DNA 主要存在于细胞核与线粒体,RNA 主要存在细胞质基质中。3、DNA 双螺旋结构模型的要点有哪

6、些?(1)、天然 DNA 分子由两条反向平行的多聚脱氧核苷酸链组成,一条的走向为 5-3,另一条链的走向为 3-5。两条链沿一个假想的中心轴右旋相互盘绕,形成大沟和小沟。(2)、磷酸和脱氧核糖作为不变的链骨架成分位于螺旋外侧,作为可变成分的碱基位于螺旋内侧。(3)、螺旋的直径为 2nm,相邻碱基平面的垂直距离为 0.34nm。螺旋结构每隔 10 个碱基重复一次,间距为 3.4nm。(4)、DNA 双螺旋结构是十分稳定的。(稳定力量主要有两个:一个是碱基堆积力。一个是碱基配对的氢键。P25)4、正确写出与下列寡核苷酸互补的 DNA 和 RNA 序列:(1)GATCAA(2)TGGAAC(3)AC

7、GCGT(4)TAGCATCTAGTT ACCTTG TGCGCA ATCGTA(DNA)CUAGUU ACCUUG UGCGCA AUCGUA(RNA)5从两种不同细菌提取得 DNA 样品,其腺嘌呤核苷酸残基分别占其核苷酸残基总数的 32%和 17%,计算这两种不同来源 DNA 的 4 种脱氧核苷酸残基的相对百分组成。两种细菌中有一种是从温泉(64)中分离出来的,该细菌 DNA 具有何种碱基组成?为什么?答:第一种细菌腺嘌呤核苷酸占 32%,鸟嘌呤核苷酸占 18%,胸腺嘧啶核苷酸占 32%,胞嘧啶核苷酸占 18%;第二种细菌腺嘌呤核苷酸占 17%,鸟嘌呤核苷酸占 33%,胸腺嘧啶核苷酸占 1

8、7%,胞嘧啶核苷酸占 33%。该种细菌从温泉中分离出来,说明它的 DNA 结构非常牢固,也就是说碱基之间形成的化学键较牢固,由此可以推知 GC(三个氢键)在此细菌的 DNA 组成中较多。6、解释名词(1)、增色效应与减色效应:核酸变性后,对上紫外光的吸收增加,这种效应称为增色效应。反之则为减色效应。(2)DNA 复性与分子杂交:变性 DNA 的两条单链的碱基可以重新配对,恢复双螺旋结构,这一过程称为 DNA 的复性;如果把不同的 DNA 链放在同一溶液中做变性处理,或把单链 DNA 与 RNA 放在一起,只要有某些区域(即链的一部分)有碱基配对的可能,它们之间就可以开成局部的双链,这一过程则称

9、为 DNA 的分子杂交。(3)Tm 值:称熔解温度(melting temperature),指消光值 A260 达到最大值一半(即最大增色效应的 50%)时的温度。第三章 蛋白质化学1、什么是氨基酸、蛋白质的等电点?其大小与什么有关?在某一特定的 PH 条件下,氨基酸分子在溶液中解离成阳离子和阴离子的数目和趋势相等,即氨基酸分子内部所带净电荷为零,在电场中既不向阴极也不向阳极移动,这时氨基酸所处的溶液的 PH 即为该氨基酸的等电点,其大小与氨基酸的种类有关,种类不同,等电点也有所不同。当溶液在某一特定的 PH 时,使蛋白质所带的正电荷与负电荷恰好相等,即净电荷为零,这时溶液的 PH 称为该蛋

10、白质的等电点;蛋白质等电点的大小与它所含氨其酸的种类和数量有关。(氨基酸较多,等电点偏高,反之偏低)2、蛋白质分子的构象可以是无限的吗?为什么?P63根据研究,多肽链真正能够存在的构象为数很有限的。因为在二面角( )的某些取值时,主链上的原子之间或主链上的原子与侧链 R 基团之间会发生空间相撞,也就是说这时非键合原子不符合标准接触距离。这样的构象也就不可能存在。3、已知:(1)卵清蛋白 PI 为 4.6;(2)B 乳球蛋白 PI 为 5.2;(3) 糜蛋白酶原 PI 为9.1。问:在 PH5.2 时上列蛋白质在电场中向阳极移动还是向阴极移动或者不移动?(注:当某蛋白质处在 PH 小于它的等电点

11、的溶液时,带正电荷,在电场中向负极移动;当其处在 PH 大于它的等电点的溶液时,带负电荷,在电场中向正极移动;相等时则不移动。)根据注解,卵清蛋白 PIPH,带负电,向正极移动;B 乳球蛋白 PI=PH,不移动;糜蛋白酶原 PIPH,带正电,在电场向负极移动。4、什么叫蛋白质的变性?哪些因素可以引起蛋白质变性?蛋白质变性后有何性质和结构上的改变?蛋白质的变性有何实际应用?天然蛋白质因受某些物理因素或化学因素的影响,由氢键、盐键等次级键维系的高级结构遭到破坏,分子空间结构发生改变,致使其物理性质、化学性质、生物活性改变的作用称为蛋白质的变性作用。引起蛋白质变性的化学因素有:强酸、强碱、脲、胍、重

12、金属盐、三氯已酸、磷钨酸、浓乙醇等;物理因素有:加热、紫外线、X 射线、超声波、剧烈振荡、搅拌等。蛋白质变性后,其物理性质改变,如溶解度减少、渗透压和扩散速度降低,不易结晶等;结构改变,由于二级结构以上的高级结构破坏,由有序的紧密结构变成无序的松散结构;化学性质改变,容易被酶水解;生物活性改变,活性降低或完全丧失。实际应用:利用蛋白质变性原理,将大豆蛋白质的浓溶液加热加盐而成变性蛋白凝固体即豆腐;医疗上的消毒杀菌也是利用此原理,还有在急救重金属盐中毒患者时,可给患者饮用大量牛乳或蛋清解毒。(蛋白质变性在实际生活中有害也有利)5、试解释蛋白质的盐溶和盐析机制。盐溶:低浓度的中性盐增加蛋白质的溶解

13、度称盐溶。盐析:高浓度的中性盐所致蛋白质沉淀叫盐析。机制:任何物质的溶解度都取决于溶质分子间及溶质分子对溶剂分子对溶剂分子的相对亲和力。在低浓度盐溶液中,蛋白质分子表面的带电基团吸附盐离子,使蛋白质颗粒带同种电荷而相互排斥。此外还由于盐的水合能力比蛋白质强,使吸附了盐离子的蛋白质加强了与水分子的相互作用,从而使蛋白质的溶解度增高。|当中性盐浓度增大到半饱和或饱和浓度时,盐离子一方面与蛋白质争夺水分,破坏蛋白质颗粒表面的水膜;另一方面,高浓度的盐离子可大量中和蛋白质颗粒上的电荷,这样既破坏了蛋白质分子上的水膜又中和了蛋白质颗粒上的电荷,蛋白质颗粒便易于沉淀下来。6、蛋白质的两性解离、沉淀特性有何

14、应用?利用蛋白质的两性解离、沉淀特性可以通过电泳,盐析与盐容分离和提纯蛋白质用于蛋白质的研究7、名词解释:(1)蛋白质的一级结构:指多肽链的氨基酸序列。(肽键和二硫键)(2)二级结构:指多肽链借助氢键排列成自己特有的 a 螺旋和 B 折叠片段。(3)三级结构:指多肽链借助各种非共价键(或非共价力)弯曲、折叠成具有特定走向的紧密球状构象。(4)四级结构:指寡聚蛋白质中各亚基之间在空间上的相互关系和结合方式。(5)超二级结构:指相互邻近的二级结构在空间折叠中靠近,彼此相互作用,开成规则的二级结构聚合体。(6)结构域:在较大的蛋白质分子或亚基中,其三维结构往往可以形成两个或多个空间上可以明显区别的区

15、域,这种相对独立的三维实体称为结构域。(7)酰胺平面:双键的重要特征之一是不能自由旋转,这就使得多肽链中围绕 C-N 键的 6个原子构成一个平面,称为酰胺平面,也称肽平面。(8)肽单元:肽单位(peptide unit):又称为肽基(peptide group),是肽键主链上的重复结构。是由参于肽链形成的氮原子,碳原子和它们的 4 个取代成分:羰基氧原子,酰氨氢原子和两个相邻 -碳原子组成的一个平面单位。第四章 酶1、名词解释(1)酶的活性中心:酶分子上直接参与底物结合和起催化作用的氨基酸残基的侧链基团根据一定的空间结构组成的区域,称为酶的活性中心或活性部位。(2)酶的别构效应:调节物与别构中

16、心结合后,诱导或稳定住酶分子的某种构象,合酶的活性中心对底物的结合与催化作用受到影响,从而调节酶的反应速度和代谢过程,此效应称为酶的别构效应。(3)同工酶:存在于同一种属生物或同一个体中能催化同一种化学反应,但酶蛋白分子的结构及理化性质和生化特性(Km、电泳行为等)存在明显差异的一组酶。(4)酶活力单位:酶活力单位的量度。1961 年国际酶学会议规定:1 个酶活力单位是指在特定条件(25,其它为最适条件)下,在 1min 内能转化 1mol 底物的酶量,或是转化底物中 1mol 的有关基团的酶量。(5)比活力:代表酶制剂的纯度。(比活力=活力单位数(U)酶蛋白(mg).(6)酶的最适温度:酶显

17、示出最大活力时所处的温度。(7)辅酶和辅基:全酶中的辅因子。(辅因子包括金属离子和小分子的有机化合物,根据它们与酶分子的结合牢固程度不同,分为辅酶和辅基)2、酶作为生物催化剂与非酶催化剂有何异同点?相似点:(1)能加快化学反应的速度而本身在反应前后没有结构和性质的改变;(2)只能缩短反应达到平衡所需要的时间而不能改变反应的平衡点。酶自身特点:酶催化效率高、具有高度专一性、易失活、催化活性可被调节控制等。3、影响酶促反应速度的因素有哪些?在酶促反应过程中,其速度受底物浓度、PH 值、温度、激活剂、抑制剂等因素的影响。4、米氏方程的实际意义和用途是什么?米氏方程:V=VmaxS/Km+S式中 V-

18、酶促反应速度;Vmax-酶完全被底物饱和时的最大反应速度;S-底物浓度;Km -米氏常数(Km 的涵义是酶促反应速度达到最大反应速度一半时的底物浓度。Km 的大小依赖于特殊的底物和环境条件。不同的酶有不同的 Km,一个酶对一个底物有一定的 Km,当一个酶有多个底物时则对应于每一个底物的 Km 也不相同,其中 Km最小的底物为酶的最适底物)测定 Km 最常见的方法是双倒数作图法,详见 P111。5、磺胺类药物能抑制细菌的生长,其作用原理是什么?对磺胺药敏感的细菌不能直接利用周围环境中的叶酸,只能利用 PABA 和二氢喋啶,在细菌体内经二氢叶酸合成酶的催化合成二氢叶酸,再与 PABA 竞争二氢叶酸

19、合成酶,阻碍二氢叶酸的合成,从而影响核酸的生成,抑制细菌生长繁殖。6、有机磷农药毒性的机理是什么?有机磷化合物能与胰蛋白酶或乙酰胆碱酯酶活性中心的 Ser 残基反应,形成稳定的共价键而使酶丧失活性。乙酰胆碱是昆虫和脊椎动物体内传导神经冲动和刺激的化学介质。乙酰胆碱酯酶催化乙酰胆碱水解为乙酸和胆碱。苦乙酰胆碱酯酶被抑制,则会导致乙酰胆碱的积累,因而引起一系列神经中毒症状,神经过度兴奋导致功能失调,最终导致死亡。这就是有机磷化合物的毒性原理。第五章 维生素与辅酶1、1g 淀粉酶定容到 1000ml 取 1ml 测酶活力,5min 水解 0.25g 淀粉,计算每克酶制剂所含淀粉酶活力单位数。(在最适

20、条件下每小时分解 1g 淀粉的酶量为一个活力单位)解:根据题目可知,该酶制剂为 1/1000g,5min 水解 0.25g 淀粉,则一小时 60min 应水解(60/5)*0.25=3.0g,则 1g 酶制剂水解的淀粉量应该为 1000*3.0=3000(g),所以每克酶制剂所含淀粉酶活力单位数为 3000。2、CoA(辅酶 A)的组成及功能?在体内,泛酸与巯基乙胺、3-磷酸-AMP 缩合形成辅酶 A。辅酶 A 主要起传递酰基的作用,是各种酰基转移酶的辅酶;通过亲核攻击转移活化的酰基;吸取一个质子活化酰基的 a-氢。被广泛用做各种疾病的重要辅助药物。第六章 生物膜的结构与功能1、名词解释:(1

21、)外周蛋白:也称周缘蛋白,一般占膜蛋白总量的 20%-30%,易溶于水,与膜脂的亲水部分靠近而分布于脂双层的内表面和外表面。(2)内在蛋白:也称整合蛋白,占膜蛋白总量的 70%-80%。这类蛋白含有较多的疏水性氨基酸或者亲脂性基团,它们分布于分子表面,因此,能与膜脂的疏水部分接近,并结合十分牢固,只有用较剧烈的条件才能将它们溶解下来。2、生物膜的重要组成成分是什么?这些组分的化学特征是什么?生物腊主要由蛋白质和脂质构成,有的还含有 1%-10%的多糖,多糖与脂质和蛋白质结合分别生成糖脂和糖蛋白(统称为膜糖)膜蛋白:生物膜的功能成分,它们除了起结构作用外,都具有生物功能,如作为催化作用的酶、作为

22、运输载体或泵、作为能量转化的氢或电子递体、作为信息传递的受体蛋白等。膜脂:包括磷脂、糖脂、硫脂、固醇等。3、膜的脂质双分子层是根据哪些证据提出的?膜组分的不对称分布和生物膜的流动性。膜质单层分子在水面的铺展面积它为细胞表面积的二倍磷脂分子分亲水端与疏水端构成4、液态镶嵌模型的主要内容是什么?流动镶嵌模型突出了膜的流动性和不对称性,认为细胞膜由流动的脂双层和嵌在其中的蛋白质组成。磷脂分子以疏水性尾部相对,极性头部朝向水相组成生物膜骨架,蛋白质或嵌在脂双层表面,或嵌在其内部,或横跨整个脂双层,表现出分布的不对称性。第七章 糖类化合物代谢1.名词解释限速酶:对反应速度的快慢起决定性的酶EMP:糖酵解

23、途径:在无氧条件下,葡萄躺糖转变为丙酮酸并形成 ATP 的一系列反应糖异生作用:指生物体利用非碳水化合物的前体(如丙酮酸或草酰乙酸)合成葡萄糖的过程。糖核苷酸:UDPG 的中文名称是尿苷二磷酸葡萄糖,而 ADPG 的中文名称是腺苷二磷酸葡萄糖,它们是重要的活化单糖,称为糖核苷酸。底物水平磷酸化:在底物氧化过程中,形成某些高能中间产物或某种高能状态,再通过酶的作用促使其将能量转给 ADP 生成 ATP 的过程。2.什么是乙醛酸循环?其有什么生物学意义?乙醛酸循环 glyoxylate cycle 存在于微生物和植物的以乙酸作为碳源,并作为能源来利用时所进行的代谢途径。另外也是种子在靠贮藏脂肪发芽

24、时,把腈肪酸分解成乙酰辅酶 A的循环代谢过程。其特点是异柠檬酸通过异柠檬酸酶(isocitratas EC.4.1.3.1)分解成琥珀酸和乙醛酸以及乙醛酸和乙酰辅酶 A(CoA)结合而形成苹果酸。其生物学意义:除了提供能量及中间产物外,更重要的是它使萌发的种子将贮存的三酰甘油通过乙酰 CoA 转变葡萄糖。3.何谓 TCA,它有何特点,有什么生物学意义?(Tricarboxylic acid cycle)是需氧生物体内普遍存在的环状代谢途径。因为此代谢途径中有几个中间代谢物具有三个羧基,故称三羧酸循环。又因此循环由柠檬酸开始,故也称柠檬酸循环。乙酰 CoA+2H2O +3NAD+FAD+GDP+

25、Pi2CO2+3NADH+3H+FADH2+CoA-SH+GTP(总反应式)主要事件顺序为:(1)乙酰 CoA 与草酰乙酸结合,生成六碳的柠檬酸,放出 CoA(2)柠檬酸先失去一个 H2O 而成顺乌头酸,再结合一个 H2O 转化为异柠檬酸(3)异柠檬酸发生脱氢、脱羧反应,生成 5 碳的 a-酮戊二酸,放出一个 CO2,生成一个NADH+H+(4) a-酮戊二酸发生脱氢、脱羧反应,并和 CoA 结合,生成含高能硫键的 4 碳琥珀酰CoA,放出一个 CO2,生成一个 NADH+H+(5)碳琥珀酰 CoA 脱去 CoA 和高能硫键,放出的能通过 GTP 转入 ATP(6)琥珀酸脱氢生成延胡索酸,生成

26、 1 分子 FADH2,(7)延胡索酸和水化合而成苹果酸(8)苹果酸氧化脱氢,生成草酸乙酸,生成 1 分子 NADH+H+小结:一次循环,消耗一个 2 碳的乙酰 CoA,共释放 2 分子 CO2,8 个 H,其中四个来自乙酰CoA,另四个来自 H2O,3 个 NADH+H+,1FADH 2。此外,还生成一分子 ATP。特点:(1)各种生物的细胞呼吸中都存在,是生物在代谢上的一个共性,生物进化的一个证据(2)高效性生物学意义:产生能量供机体生命活动所需体内糖、脂、蛋白质三大物质转化的枢纽产生的中间产物可用于合成其他化合物。说明 EMP 的主要过程。(P182)简述蔗糖,淀粉生物合成与降解过程。(

27、P155159)PPP 途径(磷酸戊糖途径)的生物学意义何在?(P186)为各种合成反应提供还原力;为其他代谢途径提供原料。第八章 生物氧化和能量转换1.名词解释生物氧化:是指细胞内糖、蛋白质和脂肪进行氧化分解而生成 CO2 和 H2O,并释放能量的过程。氧化磷酸化作用:指生物氧化过程中释放出的自由能驱动 ADP 磷酸化形成 ATP 的进程。呼吸链:在生物氧化过程中,从代谢物上脱下的氢由一系列传递体依次传递,最后与氧形成水的整个体系称为呼吸链。(亦称电子传递链)磷氧比(P/O):指一对电子通过呼吸链传递到氧时所产生的 ATP 的分子数。能荷:细胞的能态可用能量载荷来表示。能荷表示细胞的腺苷酸库

28、中充满高能磷酸根的程度。(附:能荷对代谢的调节-能荷可作为细胞产能和需能代谢过程中变构调节的信号。能荷高时,抑制生物体内 ATP 的合成,但促进 ATP 的利用;能荷低时,AMP 可对各种呼吸酶起正变构效应作用,促进 ATP 的合成。)能荷=ATP+0.5ADP/ATP+ADP+AMP解偶联作用:是使电子传递和 ATP 的生成的两上分离,除去它们的紧密联系。它只抑制的形成,而不抑制电子传递过程,使电子传递产生的自由能都变为热能而散失。)DNP:典型的解偶联剂,名为 2,4-二硝基苯酚。2.生物氧化有何特点?生物氧化是在细胞内进行的;生物氧化是在常温、常压、近于中性及有水环境中进行的;生物氧化所

29、产生的能量是逐步释放的;生物氧化所产生的能量首先转移一些特殊的高能化合物中。3、化学渗透假说的主要内容是什么?该假说认为电子传递释放出的自由能和 ATP 合成是与一种跨线粒体内膜的质子梯度相偶联的。即电子传递的自由能驱动 H+从线粒体基质跨过内膜进入到膜间隙,从而形成跨线粒体内膜的 H+电化学梯度,这个梯度的电化学电势驱动 ATP 的合成。4.电子传递链和氧化磷酸化之间有何关系?电子传递链的磷酸化是指电子从 NADH 或者 FADH2 经过电子传递链传递给分子氧时,将所释放的能量转移给 ADP,形成 ATP 的过程。概括地说,就是电子传递与磷酸化的偶联反应。这是需要生物合成 ATP 的一种主要

30、方式。通常所说的氧化磷酸化即指电子传递链磷酸化。5.常见呼吸链电子传递抑制剂有哪些?它们的作用机制如何?能够阻断呼吸链中某一特定部位电子传递的物质称为电子传递链抑制剂。常见的有鱼藤酮、抗霉素 A、氰化物、叠氮化物、CO 和 H2S。鱼藤酮是一种极毒的植物毒素,作用于呼吸链中 NADH 至 COQ 部位;抗霉素 A 是一种从灰色链球菌中分离出来的一种抗菌素,其作用于呼吸链中细胞素 b 细胞色素 c1 的部位;氰化物、叠氮化物、CO 和 H2S 这些抑制剂作用于呼吸链中细胞色素 aa3 至 O2 的部位。6.呼吸链有哪几种类型?其多样性有什么生理意义?一摩尔葡萄糖完全氧化为 CO2 和 H2O 能

31、产生多少 ATP?解: 葡萄糖+2ADP+2Pi+2NAD + 2 丙酮酸+2NADH+2H +2H2O+2ATP(总反应式)丙酮酸+CoA-SH+ NAD + 乙酰 CoA+NADH+CO2+ H+ 乙酰 CoA+2H2O +3NAD+FAD+GDP+Pi2CO2+3NADH+3H+FADH2+CoA-SH+GTP由以上反应式可知 葡萄糖-2 丙酮酸-2ATP+2(NADH+ H +)(=3(5)ATP)共5(7)ATP共 30(32)个 ATP2 丙酮酸-2 乙酰 CoA-2(NADH+ H+)(=5ATP) 共5ATP 共 20ATP2 乙酸 CoA-TCA Cycle-2*3(NADH

32、+ H+) 2*FADH22*GTP=ATP 在真核生物中的生物氧化产生 30 个 ATP,在原核生物中的生物氧化产生 32 个 ATP。第九章 脂类物质的合成与分解1、名词解释(1)脂肪酸合酶系统:是由一种酰基载体蛋白(ACP)和 6 种酶组成的多酶复合体。(6种酶分别是:乙酰 CoA-ACP 脂酰基转移酶,丙二酸单酰 CoA-ACP 转移酶,B-酮脂酰 ACP 合酶,B-酮脂酰 ACP 还原酶,B-羟脂酰 ACP 脱水酶和烯脂酰 ACP 还原酶。)2、合成脂肪酸需要哪些原料及能源物质?它们分别来自哪些代谢途径?(P227)乙酰 CoA 羧化酶,脂肪酸合酶系统,乙酰 CoA(主要来自线粒体内

33、的丙酮酸氧化脱羧,脂肪酸 B 氧化及氨基酸氧化等反应)3、BCCP:生物素羧基载体蛋白,作为乙酰 COA 羧化酶的一个亚基,在脂肪合成中参与乙酰COA 羧化形成丙二酸单酰 COA。4、ACP:是一种低分子量的蛋白质,组成脂肪酸合成酶复合体的一部分,并且在脂肪酸生物合成中作为酰基的载体发挥功能,称为酰基载体蛋白。5、何谓脂肪酸的 B 氧化?它与饱和脂肪酸的生物合成有何异同?所谓脂肪酸 B 氧化就是指脂肪酸在一系列酶的作用下,在 a 碳原子和 B 碳原子之间发生断裂,B 碳原子被氧化形成酮基,然后裂解生成含 2 个碳原子的乙酰 CoA 和较原来少 2 个碳原子的脂肪酸的过程。区别要点 脂肪酸从头合

34、成 脂肪酸 B 氧化细胞内定位 胞液 线粒体酰基载体 ACP-SH CoA-SH二碳单位参与或断裂形式 丙二酸单酰 CoA 乙酰 CoA电子供体或受体 NADH+ H+ FAD、NAD +反应底物的转运 柠檬酸穿梭 肉毒碱穿梭参与酶类 6 种 4 种能量消耗或产生 消耗 7ATP,14 NADH+ H + 净产生 106ATP6、计算 1 分子软脂酸和一分子甘油经生物氧化作用彻底分解为 CO2 和 H2O 时,生成 ATP 的分子数。(1)1 分子甘油的生物氧化甘油+ATP+甘油激酶 3-磷酸甘油+ NAD + 磷酸二羟丙酮+ NADH+ H + (2.5ATP)三羧酸循环 产生 ATP生成的

35、总 ATP 数= -1+2.5+(2)1 分子软脂酸的生物氧化C15H31COOH+8COASH+ATP+7FAD+7NAD+7H2O 8CH3COSCOA+AMP+PPi+7FADH2+7NADH+7 H + (总反应式)8 乙酰 COA 10*8=80ATP7FADH2 1.5*7=10.5ATP7NADH+ H+ 2.5*7=17.5ATP共计 108ATP 7、试述 B-氧化的过程,为什么不能说它和脂肪酸的从头合成途径是简单的互为逆转过程?脂肪酸活化生成脂酰 CoA 进入线粒体 由肉毒碱载体转运至线粒体基质开始反应 B-氧化途径经过脱氢、水化、再脱氢和硫解 4 步反应完成该氧化过程。脂

36、肪酸的 -氧化不是脂肪酸的从头合成的逆反应,它们的主要不同点为:(1)发生部位:-氧化主要在线粒体中进行,饱和脂肪酸从头合成在胞液中进行。(2)酰基载体:-氧化中脂酰基的载体为 CoA-SH,饱和脂肪酸从头合成的酰基载体是ACP。(3)-氧化使用氧化剂 NAD+和 FAD。饱和脂肪酸从头合成使用 NADPH 作为还原剂。(4)-氧化降解是从羧基端向甲基端进行,每次降解一个二碳单位,饱和脂肪酸合成是从甲基端向羧基端进行,每次合成一个二碳单位。(5) -氧化主要由 5 种酶催化反应,饱和脂肪酸从头合成由 2 种酶系催化。(6)-氧化经历氧化、水合、再氧化、裂解四大阶段。饱和脂肪酸从头合成经历缩合、

37、还原、脱水、再还原四大阶段。(7)-氧化除起始活化消耗能量外,是一个产生大量能量的过程。饱和脂肪酸从头合成是一个消耗大量能量的过程乙醛酸循环的特征。乙醛酸循环是植物体内一条由脂肪酸转化为碳水化合物的途径,发生在乙醛酸循环体中,它绕过两个脱羧反应,将两分子乙酰 CoA 转变为一分子琥珀酸的过程。乙醛酸循环可以简单看作是三羧酸循环的支路,它绕过两个脱羧反应,因此不能生成CO2。但乙醛酸循环从本质上与 TCA 不同,它发生在乙醛酸循环体中,循环的特征中间产物是乙醛酸,循环的关键酶是异柠檬酸裂解酶和苹果酸合成酶,循环的结果由 2 分子乙酰CoA 生成一分子琥珀酸,琥珀酸进入 TCA 循环生成草酰乙酸,

38、再进一步通过糖异生作用生成葡萄糖,它联系了脂肪酸代谢与糖代谢过程。9、计算 C14:O 脂肪酸和一分子甘油经生物氧化作用彻底分解为 CO2 和 H2O 时生成多少分子 ATP 和 H2O?消耗多少分子 O2?C14 脂肪酸能脱下 6 分子的乙酰 CoA, 1 分子乙酰 CoA 经 TCA 循环和电子传递链产生 10 分子 ATP,1 分子 FADH2,1 分子 NADH6 分子的乙酰 CoA 10*6=60 ATP6 FADH2 1.5*6=9 ATP6NADH 205*6=15 ATPALL 84 ATP-2ATP=82ATP写出 B-氧化的第一步反应?B-氧化的第一步为脂肪酸的活化-脂酰

39、CoA 的生成:R-COOH + ATP+ CoA-SH 脂酰 CoA 合成酶 脂酰 CoA + AMP + PPiMg2+ 简述乙酰 CoA 羧化成丙二酸单酰 CoA 的简要步骤。1 生物素羧基载体蛋白(BCCP)与生物素结合形成 BCCP-生物素2 BCCP-生物素+ATP(4-) +CO2+H2O- BCCP-生物素(-)+ADP(3-) +Pi(2-)+2H(+)3 BCCP-生物素(-)+乙酰-CoA(4-)- 丙二酸单酰-CoA(5-)+ BCCP-生物素第十二章 核酸的生物合成1.名词解释:转录(transcription):在由 RNA 聚合酶和辅助因子组成的转录复合物的催化下

40、,从双链DNA 分子中拷贝生物信息生成一条 RNA 链的过程。逆转录: 以 RNA 为模板合成 DNA,这与通常转录过程中遗传信息从 DNA 到 RNA 的方向相反,故称为逆转录。翻译:在蛋白质合成期间,将存在于 mRNA 上代表一个多肽的核苷酸残基序列转换为多肽链氨基酸残基序列的过程。冈崎片段:相对比较短的 DNA 链(大约 1000 核苷酸残基),是在 DNA 的滞后链的不连续合成期间生成的片段,这是 Reiji Okazaki 在 DNA 合成实验中添加放射性的脱氧核苷酸前体观察到的。引物合成酶:合成引物的酶如 RNA 聚合酶反义链:DNA 分子两条链中只有一条具有转录功能,这条具有转录

41、功能的链叫做模板链或反义链,另一条无转录功能的链叫做编码链或有义链。:2、为什么说 DNA 复制是半保留半不连续复制?在 DNA 复制过程中,两条亲代链一边解开,一边复制,进而一条亲代链与其复制的子代链重新形成新的双螺旋分子,所以叫半保留复制;而在 DNA 复制的延长阶段,复制叉上新生的 DNA 链一条按 5-3的方向(与复制叉移动方向一致)连续合成,另一条则按5-3的方向(与复制叉移动方向相反)不连续合成,所以称为半不连续复制。3.列出 DNA 复制和 RNA 转录各自的特点,并加以比较。DNA 复制 RNA 转录起始 dnaB(蛋白质) 启动子底物 dNTP NTP酶 DNA 聚合酶 1,

42、3 RNA 聚合酶延长方向 5-3 5-3方式 半保留半不连续复制 不对称转录终止 滞后链的合成 终止子终止4.何谓中心法则?描述从一个基因到相应蛋白质的信息流的途径。遗传信息贮存在 DNA 中,DNA 被复制传给子代细胞,信息被拷贝或由 DNA 转录成 RNA,然后 RNA 翻译成多肽。不过,由于逆转录酶的反应,也可以以 RNA 为模板合成 DNA。第十三章 蛋白质的生物合成1.名词解释遗传密码:核酸中的核苷酸残基序列与蛋白质中的氨基酸残基序列之间的对应关系。;连续的 3 个核苷酸残基序列为一个 MM 子,特指一个氨基酸。标准的遗传 MM 是由 64 个 MM 子组成的,几乎为所有生物通用。

43、密码子:mRNA(或 DNA)上的三联体核苷酸残基序列,该序列编码着一个指定的氨基酸,tRNA 的反 MM 子与 mRNA 的 MM 子互补。简并性:是指一个氨基酸可以有几个不同的密码子。摆动学说:处于 MM 子 3端的碱基与之互补的反 MM 子 5端的碱基(也称为摆动位置),例如 I 可以与 MM 子上 3端的 U,C 和 A 配对。由于存在摆动现象,所以使得一个 tRNA 反MM 子可以和一个以上的 mRANMM 子结合。2.遗传密码是怎样破译的?(P316)密码子有何特点?(P319)密码子的特性:简并性、摆动性、通用性和例外。3.核糖体的基本功能有哪些?(1)识别 mRNA 上的起始位

44、点并开始翻译;(2)密码子与 tRNA 上的反密码子正确配对;(3)合成肽键。核糖体包括至少 5 个活性中心,即 mRNA 结合部位、结合或接受 AA- tRNA 部位(A 位)、结合或接受肽基 tRNA 的部位、肽基转移部位(P 位)及形成肽键的部位(转肽酶中心),此外还有负责肽链延伸的各种延伸因子的结合位点。小亚基上拥有 mRNA 结合位点,负责对序列特异的识别过程,如起始位点的识别和密码子与反密码子的相互作用。大亚基负责氨基酸及 tRNA 携带的功能,如肽键的形成、AA- tRNA、肽基- tRNA 的结合等。A 位、P 位、转肽酶中心等主要在大亚基上。核糖体可解离为亚基或结合成 70S

45、/80S 颗粒。翻译的起始阶段需要游离的亚基,随后才结合成 70S/80S 颗粒,继续翻译进程。体外反应体系中,核糖体的解离或结合取决于Mg2+离子浓度。在大肠杆菌内,Mg2+浓度在 10-3mol/L 以下时,70S 解离为亚基,浓度达10-2mol/L 时则形成稳定的 70S 颗粒。细胞中大多数核糖体处于非活性的稳定状态,单独存在,只有少数与 mRNA 一起形成多聚核糖体。它从 mRNA 的 5末端向 3末端阅读密码子,至终止子时合成一条完整的多肽链。mRNA 上核糖体的多少视 mRNA 的长短而定,一般 40 个核苷酸有一个核糖体。4、tRNA 有何功能?tRNA 在蛋白质合成中处于关键

46、地位,被称为第二遗传密码。它不但为将每个三联子密码翻译成氨基酸提供了接合体,还为准确无误地将所需氨基酸运送到核糖体上提供了载体。所有的 tRNA 都能够与核糖体的 P 位点和 A 位点结合,此时,tRNA 分子三叶草型顶端突起部位通过密码子:反密码子的配对与 mRNA 相结合,而其 3末端恰好将所转运的氨基酸送到正在延伸的多肽上。代表相同氨基酸的 tRNA 称为同工 tRNA。在一个同工 tRNA 组内,所有tRNA 均专一于相同的氨基酰- tRNA 合成酶。5、试述原核生物蛋白质合成过程。(1)多肽链的合成;(2)肽链合成的起始;(3)肽链的延长;(4)肽链合成的终止和释放(详见 P327)

47、6、氨酰 tRNA 合成酶对氨基酸有何特异性?氨基酸活化时,其羧基与 AMP 以何种化学键相连?氨酰 tRNA 以何种化学键与 tRNA 相连?(P325-326)(AA- tRNA 合成酶是一类催化氨基酸与 tRNA 结合的特异性酶蛋白质合成的真实性主要决定于 AA- tRNA 合成酶是否能使氨基酸与对应的 tRNA 相结合。AA-tRNA 合成酶既要能识别 tRNA,又要能识别氨基酸,它对两者都具有高度的专一性。不同的 tRNA 有不同碱基组成和空间结构,容易被 tRNA 合成酶所识别,困难的是这些酶如何识别结构上非常相似的氨基酸。)7.简述三种 RNA 在蛋白质生物合成中的作用?tRNA

48、:转录过程是信息从一种核酸分子(DNA)转移至另一种结构上极为相似的核酸分子(RNA)的过程,信息转移靠的是碱基配对。翻译阶段遗传信息从 mRNA 分子转移到结构极不相同的蛋白质分子,信息是以能被翻译成单个氨基酸的三联子密码形式存在的,在这里起作用的是解码机制。mRNA 的功能是为蛋白质的合成提供模板,分子中带有遗传密码。mRNA 分子中每三个相邻的核苷酸组成一组,在蛋白质翻译合成时代表一个特定的氨基酸,这种核苷酸三联体称为遗传密码(coden)。rRNA 的结构与功能:rRNA 是细胞中含量最多的 RNA,可与蛋白质一起构成核蛋白体,作为蛋白质生物合成的场所。原核生物中的 rRNA 有三种:5S,16S,23S。真核生物中的 rRNA有四种:5S,5.8S,18S,28S8.简述原核生物肽链延长期间循环的三个步骤。(P329)进入;氨酰 tRNA 与核糖体 A 位结合转肽;核糖体上 A 位和 P 位上的氨基酸间形成肽键移位。核糖体沿 mRNA 的 5-3方向移动一个密码子根据下列 AA 的序列推导 mRNA 和反义 DNA 链的序列。Arg-SerGlyProTrpL

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报