1、1解方程解简易方程教材说明本节教材包括方程的意义、解方程和稍复杂的方程三部分内容。关于方程和解方程的知识,在初等代数中占有重要地位。中小学生在学习代数的整个过程中,几乎都要接触这方面的知识。从这个意义上说,前一节学习用字母表示数,为本节学习方程和解方程打下了基础。本节的学习内容,既包括方程的概念和解方程所依据的原理(等式基本性质),又包括方程的解法和应用。这些内容之间的逻辑联系如下图所示。其中较简单的方程,只要通过一次变形,即在方程两边同时加上或减去、乘上或除以一个适当的数,就能求出 x 的值。稍复杂的方程,则需要两次变形,才能求出 x 的值。如果说学习的目的全在于应用,那么学习方程的目的也是
2、如此。因此,学习列方程解决实际问题与学习解方程一样,是本单元的学习重点。列方程解决实际问题,与学生在这之前所采用的列算式解决实际问题,它们的共同点是,都以四则运算和常见数量关系为基础,都需要分析数量关系。它们的区别主要是思考2方法不同。列算式解决实际问题时,未知数始终作为一个“目标”,不列式运算,只能用已知数和运算符号组成算式,所以列式费思考,解题思路常常迂回曲折,局限性较大。列方程解决实际问题时,未知数能一个字母(如 x)为代表和已知数一起参加列式运算,所以解题思路更加直截了当,降低了思维难度,适用面广。但由于学生较长时期用算术方法解决问题,开始学习列方程解决问题时,往往受到算术思路的干扰。因此,在本节的教学中,注意过渡和对比,克服干扰,对于学生初步掌握列方程解决问题的思考方法和特点,初步体会列方程解决问题的优越性,具有重要意义。鉴于列方程解决问题的关键在于搞清数量之间的相等关系,所以教材在每个实际问题的解答中都列出了用文字、运算符号与等号表示的等量关系,但只要求学生学会这样思考,不要求学生解题时都书写出来,因此围以虚线框。