收藏 分享(赏)

6完全平方公式(一)教学设计.doc

上传人:微传9988 文档编号:2384424 上传时间:2018-09-14 格式:DOC 页数:6 大小:158.50KB
下载 相关 举报
6完全平方公式(一)教学设计.doc_第1页
第1页 / 共6页
6完全平方公式(一)教学设计.doc_第2页
第2页 / 共6页
6完全平方公式(一)教学设计.doc_第3页
第3页 / 共6页
6完全平方公式(一)教学设计.doc_第4页
第4页 / 共6页
6完全平方公式(一)教学设计.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、第一章 整式的乘除6 完全平方公式(第 1 课时)课时安排说明:完全平方公式共分两课时,第一课时,主要利用多项式乘法法则推导完全平方公式,了解公式的几何背景, 运用公式进行计算;第二课时,主要是进一步理解完全平方公式,运用公式进行稍复杂的计算和数的简便运算.一、 学生起点分析学生的知识技能基础:学生通过对本章前几节课的学习,已经学习了整式的乘法、平方差公式,这些知识的学习为本节课的学习奠定了基础.学生活动经验基础:在平方差公式一节的学习中,学生已经经历了探索和应用的过程,获得了一些数学活动的经验,培养了一定的符号感和推理能力;同时在相关知识 的学习过程中,学生经历了很多探究学习的过程,具有了一

2、定的独立探究意识以及与同伴合作交流的能力.二、 教学任务分析教科书在学生已经学习了整式乘法以及平方差公式的基础上,提出了本课的具体学习任务:经历探索完全平方公式的过 程,并能运用公式进行简单的计算.但这仅仅是这堂课外显的具体教学目标,或者说是一个近期目标.整式是初中数学研究范围内的一块重要内容,整式的运算又是整式中的一大主干,乘法公式则是对多项式乘法中出现的较为特殊的算式的一种归纳、总结.同时,乘法公式的推导是初中数学中运用推理方法进行代数式恒等变形的开端,通过乘法公式的学习对简化某些整式的运算、培养学生的求简意识有较大好处.而且乘法公式是后继学习的必备基础,不仅对学生提高运算速度、准确率有较

3、大作用,更是以后学习分解因式、分式运算的重要基础,同时也 具有培养学生逐渐养成严密的逻辑推理能力的作用.为此,本节课的教学目标是:1知识与技能:理解公式的本质,从不同的层次上理解完全平方公式,并会运用公式进行简单的计算,了解完全平方公式的几何背景2过程与方法:经历探索完全平方公式的过程,并从推导过程中,培养学生观察、发现、归纳、概括、猜想等探究创新能力,发展逻辑推理能力和有条理的表达能力,培养学生的数形结合意识.3情感与态度:在学习中使学生体会学习数学的乐趣,培养学习数学的信心,感 受数学的内在美.三、 教学过程设计本节课设计了七个教学环节:回顾与思考、探索引入、初识完全平方公式、再识完全平方

4、公式、又识完全平方公式、课堂小结、布置作业.第一环节 回顾与思考活动内容:复习已学过的平方差公式1. 由下面的两个图形你能得到哪个公式?2.平方差公式:(a+b) (a-b)=a 2-b2 ;公式的结构特点:左边是两个二项式的乘积,即两数和与这两数差的积.右边是两数的平方差.3. 应用平方差公式的注意事项:弄清在什么情况下才能使用平方差公式.活动目的:本堂课的学习方向仍是引导鼓励学生通过已学习的知识经过个人思考、小组合作等方式推导出本课新知,进一步发展学生的符号感和推理能力.而这个过程离不开旧知识的铺垫,平方差公式的学习有很多教学环节和形式与本节的学习是类似的,其中包含的基本知识与基本能力也仍

5、是本节的精神主旨,因而复习很有必要.实际教学效果:在复习过程中,学生能够根据图形顺利地回答出平方差公式的内容,而对于其结构特点及应用时的注意事项,通过学生之间的相互补充,绝大多数学生也得以掌握.在复习中既把旧知识得以复习,同时学生也会主动的去回顾平方差公式一节的学习过程,从而为本节课的类比学习奠定了基础.第二环节 探索引入活动内容:1.观察下列算式及其运算结果,你有什么发现?(m+3) 2=(m+3)(m+3)=m2+3m+3m+9=m2+23m+9=m2+6m+9(2+3x) 2=(2+3x)(2+3x)=4+23x+23x+9x2=4+223x+9x2=4+12x+9x2来源:学科网ZXX

6、K2.再举两例验证你的发现.3 你能用自己的语言叙述这一公式吗?4.你能用图 1-5 解释这一公式吗?活动目的:通过特例的探索,引入完全平方公式,再让学生自己举例加深对公式的体会.而在计算图形的面积时,通过对比这些表示方式可以使学生对于公式有一个直观的认识.同时在古代人们也是通过类似的图形认识了这个公式.通过自主探究和交流学到了新的知识,学生的学习积极性和主动性得到大大的激发.实际教学效果:活动 1 学生通过观察比较容易得到:(a+b) 2=a2+2ab+b2活动 2 让学生举例验证的同时,还可以引导学生通过多项式的乘法法则来验证(a +b)2=a2+2ab+b2 的正确性.活动 4 问题提出

7、后,由于前面平方差公式的学习,学生能够主动地去寻找解决问题的方法,绝大多数学生能够很顺利地想到两种不同的方法,并从中建立了数形结合的意识.从而在学生的自主探索过程中验证了完全平方公式,使学生有了一个直观认识.在整个过程中老师只是在提出问题和引导学生解决问题,学生的自主性得到了充分的体现,课堂气氛平等融洽.第三环节 初识完全平方公式活动内容:1. (ab) 2=?你是怎样做的? .2.你能自己设计一个图形解释这一公式吗?3.分析完全平方公式的结构特点,并用语言来描述完全平方公式.来源:学_科_网 Z_X_X_K结构特点:左边是二项式(两数和(差) )的平方;右边是两数的平方和加上(减去)这两数乘

8、积的两倍.语言描述:两数和(或差)的平方,等于这两数的平方和加上(或减去)这两数积的两倍.bbaa图图 1-5活动目的:第一个活动是让学生从代数运算的角度,推导出两数差的完全平方公式,培养学生有条理的思考和语言表达能力. 第二个活动使学生再次从几何的角度来验证两数差的完全平方公式.从而学生经历 了几何解释到代数运算,再到几何解释的过程,学生的数形结合意识得以培养,并且从不同的角度推导出了公式,并且加以巩固.第三个活动在前面的基础上,加以总结,使得学生从形式上初步地认识了完全平方公式.实际教学效果:此环节的设计符合学生的认知水平和认知过程.在第一个活动的教学中学生采用了不同的方法:运用多项式的乘

9、法法则把两数差看作两 数和,再运用两数和的公式.教师应重视学生对于算理的理解,让学生尝试说出每一步运算的道理,有意识地培养他们有条理的思考和语言表达能力.第二个活动既是对于第二环节用几何解释验证两数和的完全平方公式的巩固,同时也是对 于学生数形结合意识的一种培养,绝大多数学生能够通过交流合作得以掌握.通过几个活动学生能够初步地掌握了完全平方公式,并在推导过程中培养了数学的基本能 力.第四环节 再识完全平方公式活动内容: 例 1 用完全平方公式计算:(1) (2x3)2 ; (2) (4x+5y)2 ; (3) (mna)2 2. 巩固练习.(1)计算:; ;(n+1) 2n 2 ; (4x+0

10、.5)2 ;(2x 23y 2)22)(yx2)51(xy(2)纠错练习:指出下列各式中的错误,并加以改正:(1) (2a1)22a 22a+1;(2) (2a+1)24a 2 +1;(3) (a1)2 a22a1.活动目的:应用完全平方公式进行简单的计算.同时例 1 三个题目的设计上有一定的梯度,从而加以巩固落实.实际教学效果:对照公式,进行独立的简单计算,体会公式在解题中的应用,进 一步熟悉公式.并通过小组交流,自我检验,巩固反馈.考察个人的实际运用能力,并及时查漏补缺.第五环节 又识完全平方公式来源:Z。xx。k.Com活动内容:利用完全平方公式计算:(1) (-1-2x)2 ; (2)

11、 (-2x +1)2活动目的:本活动是对课本内容的补充,从而使得学生从更深的一个角度来认识完全平方公式,防止解题时中间项的符号出现问题,并能在解题中通过灵活的变形来运用公式,解决问题.实际教学效果:首先放手让学生独立来解决第一个题目,学生出错较多,且都集中在中间项的符号上,由此引出有进一步认识公式的必要,从而教师引导学生再次观察题目,仔细分析题目当中谁相当于公式当中的 a 与 b,从而运用不同的方法和思路,解决问题.在活动中学生认识到了解决问题之前恰当选择公式和正确分析题目的必要性,学习的积极性再次被激发.第六环节 课堂小结活 动内容:1. 完全平方公式和平方差公式不同: 来源:学#科#网形式

12、不同结果不同:完全平方公式的结果是三项,即 (a b)2a 2 2ab+b2;平方差公式的结果是两项, 即(a+b)(ab)a 2b2.2. 解题过程中要准确确定 a 和 b,对照公式原形的两边, 做到不丢项、不弄错符号、2ab 时不少乘 2. 活动目的:课堂小结并不只是课堂知识点的回顾,要尽量让学生畅谈自己的切身感受,教师对于发言进行鼓励,进一步梳理本节所学,更要有所思考,达到对所学知识巩固的目的.实际教学效果:学生畅所欲言自己的实际收获,达到了本节课的教学目标.第七环节 布置作业1. 基础训练:教材习题 1.11 .2. 拓展练习: (a+b)2与(a-b) 2有怎样的联系?能否用一个等式

13、来表示两者之间的关系,并尝试用图形来验证你的结论?四、教学设计反思来源:学+科+网 Z+X+X+K1. 本节课学生的探究活动比较多,教师既要全局把握,又要顺其自然,千万不可拔苗助长,为了后面多做几道练习而人为的主观裁断时间安排,其实公式的探究活动本身既是对学生能力的培养,又是对公式的识记过程,而且还可以提高他们的应用公式的本领.因此,不但不可以省,而且还要充分挖掘,以使不同程度的学生都有事情做且乐此不疲,更加充分的参与其中.对于这一点,教师一定要转变观念.2. 在完全平方公式的探求过程中,学生表现出观察角度的差异:有些学生只是侧重观察某个单独的式子,把它孤立地看,而不知道将几个式子联系地看;有

14、些学生则既观察入微,又统揽全局,表现出了较强的观察力.教师要善于抓住这个契机,适当对学生进行学法指导,培养他们“既见树木,又见森林”的优良观察品质.3. 对于公式使用的条件既要把握好“度” ,又要把握好“方向”.对于公式中的字母取值范围,不必过分强调(实际上,这个范围限定的太小了) ;而对于公式的特点,则应当左右兼顾,特别是公式的左边,它是正确应用公式的前提,却往往不被重视,结果造成几个类似公式的混淆,给正确解题设置了障碍.4. 教无定法,教师应根据本班的实际情况灵活安排教学步骤,切实把关注学生的发展放在首位来考虑,并依此制定合理而科学的教学计划.如,对于较好的班级,则可以优先发展,采取居高临下的教学思路,先整体把握再对比击破,或是将其纳入整体结构系统,采取类比的学习方式;而对于基础较薄弱的班级,则应以提高学习兴趣、教会学习、培养成功体验为主,千万不可拔苗助长,以防物极必反.

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报