1、 引擎基本构造:缸径 冲程 排气量与压缩比 引擎是由凸轮轴、汽门、汽缸盖、汽缸本体、活塞、活塞连杆、曲轴、飞轮、油底壳等主要组件,以及进气、排气、点火、润滑、冷却等系统所组合而成。以下将各位介绍在汽车型录的引擎规格中常见的缸径、冲程、排气量、压缩比、SOHC、DOHC 等名词。 缸径:汽缸本体上用来让活塞做运动的圆筒空间的直径。 冲程:活塞在汽缸本体内运动时的起点与终点的距离。一般将活塞在最靠近汽门时的位置定为起点,此点称为上死点 ;而将远离汽门时的位置称为下死点 。 排气量:将汽缸的面积乘以冲程,即可得到汽缸排气量。将汽缸排气量乘以汽缸数量,即可得到引擎排气量。以 Altis 1.8L 车型
2、的 4 汽缸引擎为例: 缸径:79.0mm,冲程:91.5mm,汽缸排气量:448.5 c.c. 引擎排气量汽缸排气量汽缸数量448.5c.c.41,794 c.c. 压缩比:最大汽缸容积与最小汽缸容积的比率。最小汽缸容积即活塞在上死点位置时的汽缸容积,也称为燃烧室容积。最大汽缸容积即燃烧室容积加上汽缸排气量,也就是活塞位在下死点位置时的汽缸容积。 Altis 1.8L 引擎的压缩比为 10:1,其计算方式如下: 汽缸排气量:448.5 c.c.,燃烧室容积:49.83 c.c. 压缩比(49.84448.5):49.849.998:110:1发动机基本工作原理一、基本理论 汽油发动机将汽油的
3、能量转化为动能来驱动汽车,最简单的办法是通过在发动机内部燃烧汽油来获得动能。因此,汽车发动机是内燃机-燃烧在发动机内部发生。 有两点需注意: 1 内燃机也有其他种类,比如柴油机,燃气轮机,各有各的优点和缺点。 2 同样也有外燃机。在早期的火车和轮船上用的蒸汽机就是典型的外燃机。燃料(煤、木头、油)在发动机外部燃烧产生蒸气,然后蒸气进入发动机内部来产生动力。内燃机的效率比外燃机高不少,也比相同动力的外燃机小很多。所以,现代汽车不用蒸汽机。 相比之下,内燃机比外燃机的效率高,比燃气轮机的价格便宜,比电动汽车容易添加燃料。这些优点使得大部分现代汽车都使用往复式的内燃机。三、汽缸数 发动机的核心部件是
4、汽缸,活塞在汽缸内进行往复运动,上面所描述的是单汽缸的运动过程,而实际应用中的发动机都是有多个汽缸的(4 缸、6 缸、8 缸比较常见) 。我们通常通过汽缸的排列方式对发动机分类:直列、V 或水平对置(当然现在还有大众集团的 W 型,实际上是两个 V 组成) 。见下图 直列 4 缸V6 水平对置 4 缸不同的排列方式使得发动机在顺滑性、制造费用和外型上有着各自的优点和缺点,配备在相应的汽车上四、排量 混合气的压缩和燃烧在燃烧室里进行,活塞往复运动,你可以看到燃烧室容积的变化,最大值和最小值的差值就是排量,用升(L)或毫升(CC)来度量。汽车的排量一般在1.5L4.0L 之间。每缸排量 0.5L,
5、4 缸的排量为 2.0L,如果 V 型排列的 6 汽缸,那就是 V6 3.0 升。一般来说,排量表示发动机动力的大小。所以增加汽缸数量或增加每个汽缸燃烧室的容积可以获得更多的动力。何谓正时一具引擎要能正确的运转,所有零件都要能在正确的时间和正确的位置做正确的事,在最佳的协调下,发挥应有的性能。就像一支部队要作战前,指挥官会分配每一组甚至每个人个别的任务,大家接受任务后,还有一件事很重要,没错,就是:对表!所有人都必须在一个独一的时间轴内完成任务。大家都必须各自在正确的时间到达定位,这就是正时 。 那么,在引擎中要怎么对表 ,又要以谁为准呢?引擎中最主要的转动是曲轴,所以所有的正时都以曲轴旋转角
6、度做为基准。以一个单缸引擎为例,当活塞在上死点时为 0度,到了下死点时为 180 度,四行程引擎以 720 度为一循环,所有运转件就以曲轴的运转为准,曲轴每旋转 720 度,所有运作就完成一次循环。 凸轮之所以能在正确的时机开启汽门,便是靠着正时链条,与曲轴保持正确的正时。曲轴正时齿盘 我们知道引擎中一切的运转都以曲轴为准,所以曲轴就有责任将它的正时告知所有机件。由于现在 ECU 的运算分辨率越来越高,甚至达到 32 位以上,所以需有一机件能精确的撷取正时讯号。目前大部分引擎会在曲轴的一端装设一个齿盘,再由一个磁感 sensor 来接收并产生讯号。假设齿盘有 60 齿,一圈 360 度则每一齿
7、间距为 6 度,当曲轴转动时,齿盘会以相同的转速跟着曲轴转动,而每一齿经过 sensor 时,会感应一个磁场,并由 sensor 转换为电子讯号让 ECU 得知目前的曲轴角度,好使喷油、点火等动作能在正确时机作动。 正时皮带与正时链条 现在引擎多是顶置式凸轮轴的设计,就是将凸轮轴设置在引擎缸头上,要驱动凸轮轴必须利用皮带或炼条使之与运转中的曲轴连结。就如前面提到的,凸轮轴的运转也需要正时 ,所以在安装正时皮带时,凸轮和曲轴的正时必须对妥。 由于正时皮带属于耗损品,而且正时皮带一旦断裂,凸轮轴当然不会照着正时运转,此时极有可能导致汽门与活塞撞击而造成严重毁损,所以正时皮带一定要依据原厂指定的里程
8、或时间更换。而正时炼条则会有相当长的寿命,所以选购配置正时炼条引擎的车,会省去更换正时皮带的麻烦与开支。 节气门与进气歧管节气门是在进气的管道中,加入一组蝴蝶阀,利用阀片旋转角度不同、开口不同的方式,控制进气量,进一步控制引擎的动力。现在车辆多采用电子节气门设计,可由引擎控制模块进行精确的控制,让输出提高、油耗下降。 新鲜空气自进气道、空气滤清器一路往引擎前进,下一个会碰到的就是节气门,也就是俗称的油门 。这是整个引擎,唯一由驾驶人所控制的机构,在化油器引擎中,这个任务则由化油器担任;而在喷射供油引擎中,节气门阀体取代了化油器。在采用了喷射供油系统后,燃油直接在进气门前由喷射器射出,节气门阀体
9、便少了使燃油与空气混合的任务。但为了能精确控制油气混合,节气门阀体机构并不比化油器简单。 一个典型的节气门体,应具备主进气道及节气门,而节气门是由一弹簧控制,当驾驶者未踩下油门时,节气门处于关闭状态,使大部分的空气被排除在阀门外;而当驾驶踏下油门踏板时,油门拉线便会拉动节气门弹簧,使阀门打开让空气从主进气道进入引擎中。除此之外,还有一个节气门感知器来把节气门开度转成电子讯号,使得引擎监理系统(ECU)能依据此来控制燃油喷量。 节气门阀体上还有一个怠速控制阀,是由一步进马达控制,引擎 ECU 会在冷车、启闭冷气、空档与 D 档变换等时机,控制怠速马达的作动,以调整引擎怠速之合适的进气量。 传统的
10、节气门(油门)是以油门拉线采机械方式驱动,然而为了全车控制的整体性,许多新推出的车型已采用了电子控制的节气门(电子油门)。 进气歧管 在谈到进气歧管之前,我们先来想想空气是怎样进入引擎的。在引擎概论中我们曾提到活塞在汽缸内的运作,当引擎处于进气行程时,活塞往下运动使汽缸内产生真空(也就是压力变小),好与外界空气产生压力差,让空气能进入汽缸内。举例来说,大家都应该有被打过针,也看过护士小姐如何将药水吸入针桶内吧!假想针桶就是引擎,那么当针桶内的活塞向外抽出时,药水就会被吸入针桶内,而引擎就是这样把空气吸到汽缸内的。 由于进气端的温度较低,复合材料开始成为热门的进气歧管材质,其质轻则内部光滑,能有
11、效减少阻力,增加进气的效率。 好了,回到主题,进气歧管位于节气门与引擎进气门之间,之所以称为歧管 ,是因为空气进入节气门后,经过歧管缓冲统后,空气流道就在此分歧了,对应引擎汽缸的数量,如四缸引擎就有四道,五缸引擎则有五道,将空气分别导入各汽缸中。以自然进气引擎来说,由于进气歧管位于节气门之后,所以当引擎油门开度小时,汽缸内无法吸到足量的空气,就会造成歧管真空度高;而当引擎油门开度大时,进气歧管内的真空度就会变小。因此,喷射供油引擎都会在进气歧管上装设一个压力计,供给 ECU 判定引擎负荷,而给予适量的喷油。 歧管真空不只可用来供给判定引擎负荷的压力讯号,还有许多用处呢!如煞车也需要利用引擎的真
12、空来辅助,所以当引擎发动后煞车踏板会轻盈许多,就是因为有真空辅助的缘故。还有某些形式的定速控制机构也会利用到歧管真空。而这些真空管一旦有泄漏或者不当改装,会造成引擎控制失调,也会影响煞车的作动,所以奉劝读者尽量不要于真空管上作不当的改装,以维护行车的安全。 进气歧管的设计也是大有学问的,为了引擎每一汽缸的燃烧状况相同,每一缸的歧管长度和弯曲度都要尽可能的相同。由于引擎是由四个行程来完成运转程序,所以引擎每一缸会以脉冲方式进气,依据经验,较长的歧管适合低转速运转,而较短的歧管则适合高转速运转。所以有些车型会采用可变长度进气歧管,或连续可变长度进气歧管,使引擎在各转速域都能发挥较佳的性能。直列引擎
13、 VS V 型引擎直列引擎直列引擎一如其名,直列引擎的汽缸均排成一直线。引擎的所有汽缸均排列在同一平面上,形成一直列的情形,称为直列引擎。以直列四汽缸引擎为例,常见的标示方式有二种,一是取与排列外型相似的 I 做标示,就标示为I4 。另外一种则是以英文 Line 做开头,而标示为Line 4或L6以代表直列 4 汽缸或是直列 6 汽缸引擎之意。 V 型引擎 采用 V 型汽缸配置的引擎可以有效减少引擎体积,增加车室空间。引擎的汽缸分别排列在二个平面上,此二个平面相互产生一个夹角。汽缸呈 V 型排列的引擎会因汽缸数量的不同,而有 60、90、120 度三种常见的角度。夹角为 180 度的引擎则另外
14、称为水平对置式引擎 。 冷却系统冷却系统的功用 冷却系统的功用是带走引擎因燃烧所产生的热量,使引擎维持在正常的运转温度范围内。引擎依照冷却的方式可分为气冷式引擎及水冷式引擎,气冷式引擎是靠引擎带动风扇及车辆行驶时的气流来冷却引擎;水冷式引擎则是靠冷却水在引擎中循环来冷却引擎。不论采何种方式冷却,正常的冷却系统必须确保引擎在各样行驶环境都不致过热。 冷却循环 因为多数车辆皆采用水冷式引擎,所以本文以介绍水冷式引擎之冷却循环为主。在水冷引擎的冷却循环中,可分为小循环与大循环 。小循环是指冷却水仅在引擎内循环,而大循环则是冷却水在引擎与热交换器 (水箱) 间循环。为什么要有大循环与小循环呢?主要是因
15、为引擎在冷车时温度低,此时少量的冷却水在引擎内作小循环,使引擎能迅速达到工作温度;一旦引擎达到工作温度,控制大、小循环转换的温度控制阀 (俗称水龟) 则会开启,让冷却水能流至水箱内让空气将热带走,引擎温度越高,水龟开启的程度就越大,冷却水的流量也越大,好带走更多的热量。冷却水的循环是靠水泵浦带动的,水泵浦则是由引擎的运转所驱动,所以当引擎转速越高,水泵浦的运转效率也越高。 冷却液的特性 冷却液是由纯水与水箱精案一定比例调制而成,水箱精能提高冷却水的沸点。纯水在常温常压下的沸点是 100,一旦引擎温度过高,会使冷却水沸腾成为水蒸气,而水在气态下的热对流系数远低于液态,所以气态的水蒸气几乎无法带走
16、引擎的热量,此时引擎温度会迅速升高而损害引擎。所以水箱精将冷却水的沸点提高,以确保冷却液在高温时仍是液态,才能带走引擎产生的热。 供油系统化油器 我们在进气系统这个单元时有约略谈过化油器,化油器最主要的功用是控制进入进气歧管的燃料流量,以及使燃料与空气正确混合。化油器主要是利用文氏管 (Venturi) 效应将燃油吸入化油器内与空气混合,供引擎燃烧。什么是文氏管效应呢?依据流体力学中的白努利 (Bernoulli) 定律 ,在一个连续固定的流场中,当流体流速增加时,流体的压力会下降。而文氏管效应就是利用流体 (空气) 流速增加所产生的低压吸力,而将燃油吸入空气中。在化油器中,空气流经口径较窄的
17、喉部被加速,因加速产生的低压会将燃油吸出与空气混合。 常见的化油器设计,是将燃油送至化油器浮筒室中储存,当节流阀板开启时,燃油会因文氏管效应而从主油孔让燃油被吸至空气流道中,除此之外,还有怠速控制系统来控制怠速及低负荷的燃油供应;副文氏管系统则在引擎油门全开时将油气增浓;加速泵会在突然大脚油门时,给予引擎更多的燃料好维持正确的燃烧,以提供实时的加速性;阻风门在冷车启动时,会挡住大部分的空气进入化油器,以提供较浓的油气,使引擎能正常启动。 虽然化油器的成本低、可靠度高,而且维修、保养容易,但由于化油器几乎是以机械方式供油,其供油精准度已无法应付严苛的环保法规,所以这几年市售的新型汽车,已经不再使
18、用化油器了。 喷射供油 近年来上市的车辆,几乎都是采用喷射供油系统,最主要的原因也是因为要因应日趋严苛的环保法规。喷射供油系统从早期的机械式单点喷射一直演化至目前的电子式多点喷射,那么,何谓单点喷射及多点喷射呢?假设一个四缸的引擎,由单个喷油嘴至于进气歧管分支之前,油料由一处喷入后在随着进气分布到四个汽缸内,这是单点喷射;而喷油嘴置于四个汽缸之各器缸的进气道者,因为每缸各有一个喷油嘴,四缸引擎则有四个喷油嘴,这称为多点喷射,本单元将谈论目前广泛使用之多点喷射的原理。 从燃油路径来看,首先燃油泵浦自油箱中将油料送至输油管中,输油管再将油料送至油轨内,而油轨由调压阀来控制燃油压力,并且确保送至各缸
19、的燃油压力皆能相同。另一方面,调压阀也会借着泄压将过多的油料送至回油管而流回油箱中。而喷油嘴一端连接于油轨上,喷嘴则为于各个器缸的进气道上。引擎 ECU 根据引擎运转状况会对喷油嘴下达喷油指令,喷油量是由燃油压力及喷油嘴喷油时间所决定,燃油压力在油轨处已由调压阀所控制,而燃油调压阀之压力是由歧管真空 (引擎负荷) 调整,所以 ECU 能控制的就是喷油时间,当引擎需要较多的燃油时,喷油时间就会较长,反之则喷油时间较短。 喷油嘴本身是一个常闭阀 (常闭阀的意思是当没有输入控制讯号时,阀门一直处于关闭状态;而常开阀则是当没有输入控制讯号时,阀门一直处于开启状态),由一个阀针上下运动来控制阀的开闭。当
20、 ECU 下达喷油指令时,其电压讯号会使电流流经喷油嘴内的线圈,产生磁场来把阀针吸起,让阀门开启好使油料能自喷油孔喷出。 喷射供油的最大优点就是燃油供给之控制十分精确,让引擎在任何状态下都能有正确的空燃比,不仅让引擎保持运转顺畅,其废气也能合乎环保法规的规范。点火系统引擎依照运转模式不同可分为火花点火(SI Spark Ignition)引擎及压缩点火(CI Compression Ignition)引擎,汽油引擎属于火花点火引擎,而柴油引擎则属于压缩点火引擎。汽油引擎既是属于火花点火引擎,其点火就必须借着点火系统来完成。 火星塞 顾名思义,火花点火引擎要点火就必须靠火花,而火花是借着火星塞产
21、生的。火星塞藉螺牙锁付在引擎燃烧式的顶端,也就是在缸头上进、排气门之间,火星塞在头部有一中央电极及接地电极,接地电极是由螺牙部分延伸出来成 L 形,与中央电极维持 0.7 到 0.9mm 的间隙,火星塞尾部则与高压导线连接。 当高压导线将极高的电压送至火星塞时,造成火星塞的两个电极间极大的电位差,导致两极间隙间原本无法导电的空气成为导体,电流便以离子流 (Ionizing Streamers) 的方式由一个电极传至另一电极,产生电弧 (Electric Arc) 来点燃引擎是中的油气。若您还是觉得不好理解,可以去观察瓦斯炉或放电式打火机的点火方式,火星塞的点火方式跟它们很类似。 各式火星塞除了
22、会有大小上不同外,相同大小的火星塞还会有热值 (Heat Rating) 的不同。热值大的火星塞其电极绝缘包覆的部分较长,适用运转温度较低的引擎;而热值较小的火星塞其电极绝缘包覆的部分较长,适用运转温度较高的引擎,如竞技用引擎。各式车辆必须依照原厂规定的火星塞规格选用火星塞,若使用热值过高的火星塞,引擎容易因温度过高而爆震;使用热值过低的火星塞,引擎则可能因燃烧温度过低而造成燃烧不完全或积碳。 分电盘点火与电子点火 分电盘是以机械方式控制各缸的点火时机,其中有一转子在分电盘中旋转,其旋转轴是由引擎带动并且转速是引擎曲轴转速的二分之一,连接至各缸火星塞的接点则依序设置在分电盘四周。当转子在分电盘
23、中旋转时,会依序使各缸接点之触发电流导通,并藉高压导线将电传送至火星塞,使火星塞点火。 分电盘上会有一个惯性弹簧-飞轮组来控制随着引擎转速不同之点火提前角,也有真空机构随着不同的引擎负荷来控制点火提前角。虽然如此,因为分垫盘的点火提前角控制皆为机械式,以引擎科技而言,还是无法称得上精确,但是因成本关系,也有少数 2000c.c.以下的引擎采用分电盘点火。 机械组件虽然可靠,但用来作引擎系统的控制总不若电子组件来得精确。在环保法规的日益严苛及消费者对性能的重视,各家车厂纷纷采用电子点火系统,及其它电子控制系统。电子点火是每两缸或每一缸由一个高压点火线圈负责,由 ECU 个别对点火线圈下达点火讯号
24、,其点火提前角是由 ECU 依据引擎运转状况计算而得,可依据引擎运转作灵活的调整;若配备有爆震感知器的引擎,ECU 也能直接对某缸作点火角提前或延后的动作。所以,爆震感知器只能装设在有电子点火的引擎上,因为分电盘的点火提前角是不受 ECU 控制的。排气系统排气歧管 图中显示四缸引擎其中两缸的排气歧管。由左边的剖面可以看到排气歧管直接连接在排气孔后,再结合为一。排气歧气在设计上会尽量让各缸的阻力相同,以让排气顺畅。 新鲜空气与汽油混合进入引擎燃烧后,产生高温高压的气体推动活塞,当气体能量释放后,对引擎就不再有价值,这些气体就成为废气被排放出引擎外。废气自汽缸排出后,随即进入排气歧管,各缸的排气歧
25、管汇集后,经过排气管将废气排出。而就如进气歧管一样,气体在排气歧管内也是以脉冲的方式离开引擎,所以各缸的排气歧管长度及弯度也要设计成尽量相同,使各缸的排气都能一样的顺畅。 触媒转换器 在说到触媒转换器之前,我们先简单的认识一下引擎废气的组成成分。汽油是一种碳氢化合物,在汽油分子中几乎都是碳及氢原子,这些碳及氢燃烧后照理应该是产生二氧化碳 (CO2)及水 (H2O),但是因为少量混合气未完全燃烧,并且会有少许机油 (有未燃烧的也有以燃烧的) 被排放出来,所以会产生 HC (碳氢化合物) 及 CO (一氧化碳)。再者,进到引擎内的空气中,含有百分之八十的氮气 (N2),但经过燃烧室的高温,原本很稳
26、定的氮,会与空气中的氧 (O2)化合,产生 NO 及 NO2,统称 NOx。HC、CO 及 NOx 都会造成环境污染且对人体有害,所以世界各国都会制订环保法规,针对车辆排污加以限制。 由于环保法规对车辆排污的标准相当严苛,不论怠速、加速、低速行驶、高速行驶或减速,都必须符合排污标准,车辆在面对这么严苛的限制,除了在性能与排污中取得平衡点外,唯一的撇步就是触媒转换器了。触媒转换器通常以贵重金属为原料,有氧化型触媒、还原型触媒及目前绝大多数车辆采用的三元触媒转换器。 从排气歧管之后,便接上触媒转换器,以将未完全燃烧之污染物转换为无害物质,保护环境。再来上个简单的化学课,排污中的 HC 和 CO 都
27、是因为燃烧不完全所产生的,要消除它们就必须再燃烧它们,也就是使它们氧化,所以这是氧化型触媒的任务。而 NOx 的生成则是因为氮被氧化所致,所以必须还原型触媒来将 NOx 还原氮气。三元触媒转换器则是让 HC 和 CO 的氧化及 NOx 的还原都发生在同一触媒中。而触媒本身并不参与氧化或还原的化学反应,它只是化学反应中的催化剂。 触媒转换器位于哪里呢?早期的触媒转换器多设置于排气管中段的位置,而近来多装在紧接排气歧管之后,好使触媒加快达到工作温度。触媒必须在接近 500 度的高温下,才能获得较好的转换效率,低温时则几乎没有转换能力,故冷车的排污量相当大。所以在此也要提醒所有车主,千万不要在室内或
28、地下停车场内热车,尽量车一发动就开到室外,才不至于毒害自己或是其它在停车场内的人员。 消音器 顾名思义,消音器就是用来消除排气的噪音,使车辆行驶起来更宁静。一般消音器中会有数个膨胀室,引擎排放出来的废气经过数个膨胀程序后,会使得排气脉冲缓和而消除噪音。然而,由于气体在消音器路径复杂,换言之也就是消音器降低了排气的顺畅性,所以也会略略影响引擎性能。有些人会自行改装直通式排气尾管,这样虽然稍稍提升引擎性能,却会大大增加排气噪音,所以这是不值得肯定也是违反交通规定的行为。 润滑系统燃料进入引擎燃烧后,将燃料的内能转换成功来使引擎运转,然而并不是所有的功都用来驱动引擎的运转,因为引擎中机件间的摩擦会消
29、耗引擎产生的功,而将其转换为热能。为了降低磨差来保护引擎,必须有一润滑系统来润滑引擎。 机油的功用 没错,机油正是在引擎中扮演润滑的角色。机油除了能润滑引擎降低摩擦外,还有防止引擎金属腐蚀、消除进入引擎中的灰尘及其它污染物、在活塞与汽缸壁间帮助燃烧室气蜜、为活塞及轴成等零件冷却及消除引擎内不必要的产物。 机油的循环 引擎中大部分的机油都储存于油底壳中,机油的循环由随引擎转动之机油泵浦驱动,自油底壳将机油吸出,经过机油滤清器滤掉杂质后,高压的机油从引擎的机油流道流至引擎各处,润滑或冷却各个机件,最后在流回油底壳中。 引擎中会有极少量的机油进入燃烧室被燃烧,所以机油有少量的消耗是正常的。然而若过量
30、的机油由活塞与汽缸壁的间隙往上进入燃烧室称为上机油 ,而机油由汽缸头之阀系间隙向下流入燃烧室中则称为下机油 ,二者都是所谓的吃机油 。引擎若是有吃机油的现象,当然机油会消耗很快,而且因为机油大量燃烧的关系,会自排气管排出淡青色的烟,此时必须去保修场检查是上机油或下机油 ,好对症下药。 机油的选用 机油依据其成分可分为全合成、半合成及矿物油,一般来说,全合成机油在引擎中随引擎运转的衰退程度较低,而矿物油的衰退程度较高。但是若是车辆都能在原厂指定之换油或时间内更换机油,就算使用矿物油,也不会对引擎造成任何伤害。 机油除了有成分上的不同,也在黏度指数上有区别。黏度指数是指机油黏度随温度改变的程度,目
31、前最常使用的机油黏度分类是依照 SAE 号数分类,不同的号数对应不同的黏度范围,号数越大代表黏度越大。SAE 编号后方加上 W 者指适用于寒冷气候的机油,其编号越小者黏性越小,引擎在寒冷的冬天越容易启动。 机油号数除了 SAE 50 (例) 或 SAE 10W (例) 等单级机油外,还有如 10W-40 等之复级机油,复级机油能同时满足高温与低温的使用需求。目前市面上常见的多为复级机油,复级机油于W 之前的号数越低、后方的号数越高者,表示该机油能适用的气候范围较大。以台湾的气候状况,10W-40 已经能满足,若引擎长时间以高负荷、高转速运转者,则可选用黏度较高的机油。 泵浦、发电机与压缩机所谓
32、附件,就是在维持引擎基本运转所需之外的机件,而这些机见识由引擎附件皮带所驱动。通常引擎附件包括:发电机、水泵浦、冷气压缩机及动力方向盘泵浦等,以下对这几项附件作概略介绍。 引擎是车辆主要的动力来源,因此压缩机、泵浦、发电机等都与引擎以皮带连结,利用引擎运转的输出带动,提供冷却、润滑、空调、供电及转向辅助等功能。 发电机: 发电机利用引擎的运转为动力,将动能转换为电能,再将电量储存于电瓶中,以供车上所有电器使用。发电机若损坏会失去充电能力,电瓶内的电量就会逐渐消耗到完全没电为止。所以车子的电瓶若是经常没电,除了要检查电瓶外,也要检查发电机是否还正常。 水泵浦: 水泵浦提供引擎冷却水能正常循环所需
33、的压力,严格来说不该算是附件,只是有些引擎利用附件皮带来驱动水泵浦。水泵浦一旦失效,引擎则会失去冷却能力,此时若没有短时间内将引擎熄火,常会使引擎因过热而严重受损。 冷气压缩机: 常有人认为车上的冷气压缩机是靠电力驱动,其实冷气压缩机动力是来自引擎的运转,并由附件皮带所带动。当驾驶在车内按下冷气开关时,冷气压缩机上的离合器便会与被附件皮带带动而旋转的惰轮接合,此时压缩机就会开始运作。所以当引擎不运转时压缩机是完全不会运转的;然而一旦压缩机开始运转,是会耗损些许引擎动力的,当然油耗也会有些许的增加。动力方向盘泵浦: 配备动力方向盘的车,方向盘会变得比较轻盈,这是因为动力方向盘泵浦利用引擎的动力,
34、产生油压来辅助方向机转向,所以动力方向盘也是在引擎发动时才有作用的。然而和冷气压缩机一样,动力方向盘泵浦也是会消耗引擎动力并造成油耗的。 附件皮带 引擎的两端分别称为飞轮端与附件端,飞轮端连接变速箱,而附件端则是挂载引擎附件。所有附件安置于引擎附件端,是由一至二条皮带将所有附件连上曲轴。而附件皮带上都会有一个张力器来调整皮带张力,如果张力过松,通常皮带在运转时会产生尖锐的声音,所以当有些车子在起步时,会伴随着尖锐的声音,这都是皮带在作祟。 附件皮带也是需要定期更换的,通常是在更换正时皮带时一并更换。若车辆在行驶中附件皮带断裂,附件便会停止作动,而由附件皮带带动的水泵浦也会失去作用而损害引擎。所
35、以有些引擎会将水泵浦设计至以正时皮带或炼条带动,为的就是当附件皮带断裂时,随然失去冷气及方向盘动力辅助,但引擎还能正常运转,以便将车开至保修场。 排气与环保EGR EGR(Exhaust Gas Recirculation 废气再回收)是从排气歧管接出一个旁通管至进气歧管内,而将部分引擎废气随着新鲜空气导入引擎中燃烧,导入废弃的量是由 ECU 依据当时引擎转速、负荷等讯息所计算出来,并由 EGR 阀所控制。 EGR 的功用最主要是用来降低引擎中 NOx 的排放量的,我们在触媒转换器单元中有介绍过废弃成分的产生,其中 NOx 的产生是因为引擎燃烧温度过高所致。本来,要降低燃烧温度来抑制 NOx
36、的生成最好的方法就是延后点火提前角,然而点火角延后会大幅降低引擎性能并且提高油耗量,所以目前最好的解决方是就是装设 EGR。EGR 虽然会小幅的牺牲一点引擎性能,但却能降低引擎燃烧温度,以控制 NOx 的生成。经实验证明,正确的利用 EGR 能降低百分之 50 的 NOx 生成量。如此便能大大减低触媒转换器的负担,降低触媒对于 NOx 的配方量,而节省触媒转换器的制造成本。 含氧感知器 含氧感知器(O2 Sensor)装在触媒转换器的前端,引擎 ECU 借着含氧感知器侦测废气中的含氧量,来判定引擎燃烧状况,以决定喷油量的多寡。当含氧感知器侦测到较浓的氧含量时,表示当时引擎为稀油燃烧,所以 EC
37、U 会使喷油嘴的喷油量增加;相反的,当含氧感知器侦测到较稀的氧含量时,表示当时引擎为浓油燃烧,所以 ECU 会减少喷油嘴的喷油量。 然而,引擎喷油量主要并不是含氧感知器决定,引擎在每个转速及负荷下该喷多少油,引擎调校工程师都已经在引擎调校时定义好了,而含氧感知器所传送的含氧量讯息,只是在 ECU对引擎作闭回路控制时的回馈讯号,使引擎的喷油量在调校工程师的定义下,再针对当时引擎的运转状况作些微的修正,让引擎的运转能处于最佳状态,这就是一般人所说 ECU 的学习功能。所以当含氧感知器坏掉时,引擎还是能正常运作,但就是少了自我修正的功能。这样,引擎的运转就不能确保在最佳状态,并且也有可能造成排污值过
38、高而加速触媒转换器的老化,所以当含氧感知器坏掉时,仪表版上的警示灯会亮起。传动系统汽车要行驶在道路上必须先使车轮转动,要如何将引擎的动力传送到车轮并使车轮转动?负责传递动力让汽车发挥行驶功能的装置就是传动系统,汽车没有了它就会成为一台发电机和烧钱的机器了。 在基本的传动系统中包含了负责动力接续的装置、改变力量大小的变速机构、克服车轮之间转速不同的差速器,和联结各个机构的传动轴,有了这四个主要的装置之后就能够把引擎的动力传送到轮子上了。 一、动力接续装置 1. 离合器:这组机构被装置在引擎与手排变速箱之间,负责将引擎的动力传送到手排变速箱。 2. 扭力转换器:这组机构被装置在引擎与自排变速箱之间
39、,能够将引擎的动力平顺的传送到自排变速箱。在扭力转换器中含有一组离合器,以增加传动效率。 二、变速机构 1. 手动变速机构:一般称为手排变速箱 。以手动操作的方式进行换档。 2. 自动变速机构:一般称为自排变速箱 。利用油压的作动去改变档位。 三、差速器 当车辆在转向时,左、右二边的轮子会产生不同的转速,因此左、右二边的传动轴也会有不同的转速,于是利用差速器来解决左、右二边转速不同的问题。 四、传动轴 将经过变速系统传递出来的动力,传递至车轮进而产生驱动力道的机构。变速系统汽车在起步加速时须要比较大的驱动力,此时车辆的速度低,而引擎却必须以较高的转速来输出较大的动力。当速度逐渐加快之后,汽车所
40、须要的行驶动力也逐渐降底,这时候引擎只要以降低转速来减少动力的输出,即可提供汽车足够的动力。汽车的速度在由低到高的过程中,引擎的转速却是由高变到低,要如何解决矛盾现象呢?于是通称为变速箱的这种可以改变引擎与车轮之间换转差异的装置为此而生。 变速箱为因操作上的需求而有手动变速箱与自动变速箱二种系统,这二种变速箱的做动方式也不相同。近年来由于消费者的需求以及技术的进步,汽车厂开发称为手自排变速箱的可以手动操作的自动变速箱;此外汽车厂也为高性能的车辆开发出称为自手排变速箱的附有自动操作功能的手动变速箱。目前的 F1 赛车全面使用自手排变速箱 ,因此使用此类型手动变速箱的车辆均标榜采用来自 F1 的科
41、技。 手排变速系统 在手动变速系统里面含有离合器、手动变速箱二个主要部份。 离合器:是用来将引擎的动力传到变速箱的机构,利用磨擦片的磨擦来传递动力。一般车型所使用的离合器只有二片磨擦片,而赛车和载重车辆则使用具有更磨擦片的离合器。离和器还有干式与湿式二种,湿式离合器目前几乎不再被使用于汽车上面。 手动变速箱:以手动方式操作变速箱去做变换档位的动作,使手动变速箱内的输入轴和输出轴上的齿轮啮合。多组不同齿数的齿轮搭配啮合之后,便可产生多种减速的比率。目前的手动变速箱均是使用同步齿轮的啮合机构,使换档的操作更加的简易,换档的平顺性也更好。 自排变速系统 为了使汽车的操作变得简单,并让不擅于操作手动变
42、速箱的驾驶者也能够轻易的驾驶汽车,于是制造一种能够自动变换档位的变速箱就成为一件重要的工作,因此汽车工程师在 1940年开发出世界首具的自动变速箱。从此以后驾驶汽车在起步、停止以及在加减速的行驶过程中,驾驶者就不需要再做换档的动作。 北京现代现代的自动变速系统里面含有液体扭力转换器、自动变速箱、电子控制系统三个主要部份。在电子控制系统里面加入手动换文件的控制程序,就成了具有手动操作功能的手自排变速箱 。 液体扭力转换器:在主动叶轮与被动叶轮之间,利用液压油做为传送动力的介质。将动力自输入轴传送到对向的输出轴,经由输出轴再将动力传送到自动变速箱。 由于液压油在主动叶轮与被动叶轮之间流动时会消耗掉
43、部份的动力。为了减少动力的损失,在主动与被动叶轮之间加入一组不动叶轮使能量的传送效率增加;以及在液体扭力转换器内加入一组离合器,并在适当的行驶状态下利用离合器将主动与被动叶轮锁定,让主动与被动叶轮之间不再有转速的差异,进而提高动力的传送效率。 自动变速箱:以行星齿轮组构成换档机构,利用油压推动多组的摩擦片,去控制行星齿轮组的动作,以改变动力在齿轮组的传送路径,因而产生多种不同的减速比率。Toyota Celsior(Lexus LS430)在 2003 年起用六速自动变速箱,使 Toyota 成为第三家采用六速自动变速箱的汽车制造厂。 电子控制系统:早期的机械式自动变速箱的换档控制是以油压的压
44、力变化去决定何时做换档的动作,即使经过多年的研究及改良,机械式自动变速箱的换文件性能仍然不尽人意。于是电子式自动变速箱便因应而出了。为了使换档的时机更加的精确,以及获得更加平顺的换文件质量,各汽车制造厂均投入大量的资源,针对自动变速箱的电子控制系统做研究。例如在Toyota 汽车的自动变速箱都具有 Lup-s、ECT-i 的电子控制机能,在较新型式的自动变速箱中还加入了N 文件控制系统。手动变速箱的基本工作原理 一、变速箱的作用 发动机的物理特性决定了变速箱的存在。首先,任何发动机都有其峰值转速;其次,发动机最大功率及最大扭矩在一定的转速区出现。比如,发动机最大功率出现在 5500 转。变速箱
45、可以在汽车行驶过程中在发动机和车轮之间产生不同的变速比,换档可以使得发动机工作在其最佳的动力性能状态下。理想情况下,变速箱应具有灵活的变速比。无级变速箱(CVT)就具有这种特性,可以较好的发挥发动机的动力性能。 二、CVT 无级变速箱有着连续的变速比。其一直因为价格、尺寸及可靠性的关系而没有大量装备汽车。现在,改进的设计使得 CVT 的使用已比较普遍。国产 AUDI 2.8 CVT 变速箱通过离合器与发动机相连,这样,变速箱的输入轴就可以和发动机达到同步转速。 奔驰 C 级 Sport Coupe 6 速手动变速箱,一个 5 档的变速箱提供 5 种不同的变速比,在输入轴和输出轴间产生转速差。
46、三、简单的变速箱模型 为了更好的理解变速箱的工作原理,下面让我们先来看一个 2 档变速箱的简单模型,看看各部分之间是如何配合的: 输入轴(绿色)通过离合器和发动机相连,轴和上面的齿轮是一个部件。轴和齿轮(红色)叫做中间轴。它们一起旋转。轴(绿色)旋转通过啮合的齿轮带动中间轴的旋转,这时,中间轴就可以传输发动机的动力了。 轴(黄色)是一个花键轴,直接和驱动轴相连,通过差速器来驱动汽车。车轮转动会带着花键轴一起转动。 齿轮(蓝色)在花键轴上自由转动。在发动机停止,但车辆仍在运动中时,齿轮(蓝色)和中间轴都在静止状态,而花键轴依然随车轮转动。 齿轮(蓝色)和花键轴是由套筒来连接的,套筒可以随着花键轴
47、转动,同时也可以在花键轴上左右自由滑动来啮合齿轮(蓝色) 。 挂进 1 档时,套筒就和右边的齿轮(蓝色)啮合。见下图: 如图所示,输入轴(绿色)带动中间轴,中间轴带动右边的齿轮(蓝色) ,齿轮通过套筒和花键轴相连,传递能量至驱动轴上。在这同时,左边的齿轮(蓝色)也在旋转,但由于没有和套筒啮合,所以它不对花键轴产生影响。 当套筒在两个齿轮中间时(第一张图所示) ,变速箱在空挡位置。两个齿轮都在花键轴上自由转动,速度是由中间轴上的齿轮和齿轮(蓝色)间的变速比决定的。 四、真正的变速箱 如今,5 档手动变速箱应用已经很普遍了,以下是其模型。 换档杆通过三个连杆连接着三个换档叉,见下图 在换挡杆的中间
48、有个旋转点,当你拨入 1 档时,实际上是将连杆和换档叉往反方向推。 你左右移动换档杆时,实际上是在选择不同的换档叉(不同的套筒) ;前后移动时则是选择不同的齿轮(蓝色) 。 倒档 通过一个中间齿轮(紫色)来实现。如图所示,齿轮(蓝色)始终朝其他齿轮(蓝色)相反的方向转动。因此,在汽车前进的过程中,是不可能挂进倒档的,套筒上的齿和齿轮(蓝色)不能啮合,但是会产生很大的噪音。 同步装置 同步是使得套筒上的齿和齿轮(蓝色)啮合之前产生一个摩擦接触,见下图齿轮(蓝色)上的锥形凸出刚好卡进套筒的锥形缺口,两者之间的摩擦力使得套筒和齿轮(蓝色)同步,套筒的外部滑动,和齿轮啮合。 汽车厂商制造变速箱时有各自
49、的实现方式,这里介绍的是一个基本的概念!自动变速箱工作原理自动变速器能够根据发动机负荷和车速等情况自动变换传动比,使汽车获得良好的动力性和燃料经济性,并减少发动机排放污染。自动变速器操纵容易,在车辆拥挤时,可大大提高车辆行驶的安全性及可靠性。 电子控制自动变速器通常由液力变矩器、行星齿轮变速系统、换挡执行器、液压操纵系统、电子控制系统五部分组成。 液力变矩器的工作原理 目前轿车上广泛采用由泵轮、涡轮和导轮组成的单级双相三元件闭锁式综合液力变矩器。泵轮和涡轮均为盆状的。泵轮与变矩器外壳连为一体,是主动元件;涡轮悬浮在变矩器内,通过花键与输出轴相连,是从动元件;导轮悬浮在泵轮和涡轮之间,通过单向离合器及导轮轴套固定在变速器外壳上。 发动机启动后,曲轴带动泵轮旋转,因旋转产生的离心力使泵轮叶片间的工作液沿叶片从内缘向外缘甩出;这部分工作液既具有随泵轮一起转动的园周向的分速度,又有冲向涡轮的轴向分速度。这些工作液冲击涡轮叶片,推动涡轮与泵轮同方向转动。 从涡轮流出工作液的速度 v 可以看为工作液相对于涡轮叶片表面流出的分速度 与随涡轮一起转动分速度 u 的合成。当涡轮转速比较小时,从涡