1、北师大版八年级(上),第六章 数据的分析,6.1 平均数,生活中,人们离不开数据,我们不仅要收集 数据,还要对数据进行加工处理,进而作出判断 ,情景引入,当你听到“小亮的身高在班上是中等偏上的” “A篮球队的队员比B队更年轻”等诸如此类的说法 时,你思考过这些话的含义吗?,你是怎样看待该公司员工的收入?,、CBA20012002赛季冠亚军球队队员的身高、 年龄如下:,新知探究,哪支球队队员的身高更为高大?怎样比较?,比较两队的平均身高,新知探究,、CBA20012002赛季冠亚军球队队员的身高、 年龄如下:,哪支球队队员的年龄更大?怎样比较?,比较两队的平均年龄,新知归纳,算术平均数的定义:,
2、一般地,对于n个数x1, x2, xn,我们 把,范例讲解,例1、为了考察甲、乙两种作物的长势,研究人员 分别抽取了10株苗,测得他们的高度如下(单位: cm): 甲:9,14,11,12,9,13,10,8,12,8; 乙:8,13,12,11,9,12, 7, 7, 9,11。 你认为哪种农作物长得高一些?说说理由。,解:,甲种作物长得较高。,1、某次体操比赛,六位评委对某选手的打分如 下(单位:分):9.5, 9.3, 9.1, 9.5, 9.4, 9.3 (1)求这六个分数的平均分。 (2)如果规定:去掉一个最高分和一个最低分, 余下的平均值作为选手的最后得分,那么该选手 的最后得分是
3、多少?,巩固练习,合作交流,、小明是这样计算东方大鲨鱼队队员的平均年 龄的:,你能说说小明这样做的道理吗?,2、某灯泡厂为了测定本厂生产的灯泡的使用寿命 (单位:时),从中抽查了400只灯泡,测得它们的 使用寿命如下:,巩固练习,为了计算方便,使用寿命介于500时与600时之间 的灯泡的使用寿命均近似地看作550时使用寿 命介于1000时与1100时之间的灯泡的使用寿命均 近似地看作1050时,这400只灯泡的平均使用寿命 约是多少?,3、八年级一班有学生50人,八年级二班有学生 45人。期末数学测试中,一班学生的平均分为 81.5分,二班学生的平均分为83.4分,这两个班 95名学生的平均分
4、是多少?,巩固练习,合作交流,、某条小河平均水深1.3米,一个身高1.6米的小 孩在这条河里游泳是否一定没有危险?,例2、某广告公司欲招聘广告策划人员一名,对 A、B、C三名候选人进行了三项素质测试。他们 的各项成绩如下表所示:,范例讲解,(1)如果根据三项测试的平均成绩确定录用人选, 那么谁将被录用?,例2、某广告公司欲招聘广告策划人员一名,对 A、B、C三名候选人进行了三项素质测试。他们 的各项成绩如下表所示:,范例讲解,(2)根据实际需要,公司将创新、综合知识和语言 三项测试得分按431的比例确定各人的测试成 绩,此时谁将被录用?,新知归纳,加权平均数的意义:,在实际问题中,一组数据里的
5、各个数据的“重要程度”未必相同。因而,在计算这组数据 的平均数时,往往给每个数据一个“权”。,如上题中4、3、1分别是创新、综合知识、语言三项测试成绩的权,而称,为A的三项测试成绩的加权平均数。,4、某校规定学生的体育成绩由三部分组成:早 锻炼及体育课外活动表现占成绩的20%,体育理 论测试占30%,体育技能测试占50%。小颖的上 述三项成绩依次是92分、80分、84分,则小颖这 学期的体育成绩是多少?,巩固练习,课堂小结,1、算术平均数的定义:,一般地,对于n个数x1, x2, xn,我们把,课堂小结,2、加权平均数的意义:,在实际问题中,一组数据里的各个数据的 “重要程度”未必相同。因而,在计算这组数据 的平均数时,往往给每个数据一个“权”。,如上题中4、3、1分别是创新、综合知识、语言三项测试成绩的权,而称,为A的三项测试成绩的加权平均数。,