1、(二)数列1(2018三明质检)已知正项数列an的前n项和为Sn,a11,且(t1)Sna3an2(tR)(1)求数列an的通项公式;(2)若数列bn满足b11,bn1bnan1,求数列的前n项和Tn.解(1)因为a11,且(t1)Sna3an2,所以(t1)S1a3a12,所以t5.所以6Sna3an2.当n2时,有6Sn1a3an12,得6ana3ana3an1,所以(anan1)(anan13)0,因为an0,所以anan13,又因为a11,所以an是首项a11,公差d3的等差数列,所以an3n2(nN*)(2)因为bn1bnan1,b11,所以bnbn1an(n2,nN*),所以当n2
2、时,bn(bnbn1)(bn1bn2)(b2b1)b1anan1a2b1.又b11也适合上式,所以bn(nN*)所以,所以Tn,.2(2018葫芦岛模拟)设等差数列an的前n项和为Sn,且S3,S4成等差数列,a53a22a12.(1)求数列an的通项公式;(2)设bn2n1,求数列的前n项和Tn.解(1)设等差数列an的首项为a1,公差为d,由S3,S4成等差数列,可知S3S4S5,得2a1d0,由a53a22a12,得4a1d20,由,解得a11,d2,因此,an2n1(nN*)(2)令cn(2n1)n1,则Tnc1c2cn,Tn11352(2n1)n1,Tn13253(2n1)n,得Tn
3、12(2n1)n12 (2n1)n 3,Tn6(nN*)3(2018厦门质检)已知等差数列an满足(n1)an2n2nk,kR.(1)求数列an的通项公式;(2)设bn,求数列bn的前n项和Sn.解(1)方法一由(n1)an2n2nk,令n1,2,3,得到a1,a2,a3,an是等差数列,2a2a1a3,即,解得k1.由于(n1)an2n2n1(2n1)(n1),又n10,an2n1(nN*)方法二an是等差数列,设公差为d,则ana1d(n1)dn(a1d),(n1)an(n1)(dna1d)dn2a1na1d,dn2a1na1d2n2nk对于nN*均成立,则解得k1,an2n1(nN*)(
4、2)由bn111,得Snb1b2b3bn1111nnn(nN*)4(2018天津河东区模拟)已知等比数列an满足条件a2a43(a1a3),a2n3a,nN*.(1)求数列an的通项公式;(2)数列bn满足n2,nN*,求bn的前n项和Tn.解(1)设an的通项公式为ana1qn1(nN*),由已知a2a43(a1a3),得a1qa1q33(a1a1q2),所以q3.又由已知a2n3a,得a1q2n13aq2n2,所以q3a1,所以a11,所以an的通项公式为an3n1(nN*)(2)当n1时,1,b11,当n2时,n2,所以(n1)2,由得2n1,所以bn(2n1)3n1,b11也符合,综上
5、,bn(2n1)3n1(nN*)所以Tn130331(2n3)3n2(2n1)3n1,3Tn131332(2n3)3n1(2n1)3n,由得2Tn1302(31323n1)(2n1)3n13023(2n1)3n13n3(2n1)3n(22n)3n2,所以Tn1(n1)3n(nN*)5(2018宿州模拟)已知数列an的前n项和为Sn,数列Sn的前n项和为Tn,满足Tn2Snn2.(1)证明数列an2是等比数列,并求出数列an的通项公式;(2)设bnnan,求数列bn的前n项和Kn.解(1)由Tn2Snn2,得a1S1T12S11,解得a1S11,由S1S22S24,解得a24.当n2时,SnTnTn1 2Snn22Sn1(n1)2,即Sn2Sn12n1,Sn12Sn2n1,由得an12an2,an122(an2),又a222(a12),数列an2是以a123为首项,2为公比的等比数列,an232n1,即an32n12(nN*)(2)bn3n2n12n,Kn3(120221n2n1)2(12n)3(120221n2n1)n2n.记Rn120221n2n1,2Rn121222(n1)2n1n2n,由,得Rn2021222n1n2nn2n (1n)2n1,Rn(n1)2n1.Kn3(n1)2nn2n3(nN*)6