1、牛顿第一定律 惯性 牛顿第三定律目标:1理解牛顿第一定律、惯性;理解质量是惯性大小的量度2理解牛顿第三定律,能够区别一对作用力和一对平衡力3掌握应用牛顿第一定律、第三定律分析问题的基本方法和基本技能重点:理解牛顿第一定律、惯性概念难点:惯性过程:一、牛顿第一定律1牛顿第一定律(惯性定律):一切物体总是保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。这个定律有两层含义:(1)保持匀速直线运动状态或静止状态是物体的固有属性;物体的运动不需要用力 来维持。(2)要使物体的运动状态(即速度包括大小和方向)改变,必须施加力的作用,力是改变物体运动状态的原因。点评:牛顿第一定律导出了力的
2、概念力是改变物体运动状态的原因。(运动状态指物体的速度)又根据加速度定义:,有速度变化就一定有加速度,所以可以说:力是使物体产生加速度的原因。(不能说“力是产生速度的原因”、“力是维持速度的原因”,也不能说“力是改变加速度的原因”。) 牛顿第一定律导出了惯性的概念一切物体都有保持原有运动状态的性质,这就是惯性。惯性反映了物体运动状态改变的难易程度(惯性大的物体运动状态不容易改变)。质量是物体惯性大小的量度。牛顿第一定律描述的是理想化状态牛顿第一定律描述的是物体在不受任何外力时的状态。而不受外力的物体是不存在的。物体不受外力和物体所受合外力为零是有区别的,所以不能把牛顿第一定律当成牛顿第二定律在
3、F=0时的特例。2惯性:物体保持原来匀速直线运动状态或静止状态的性质。对于惯性理解应注意以下三点:(1)惯性是物体本身固有的属性,跟物体的运动状态无关,跟物体的受力无关,跟物体所处的地理位置无关。(2)质量是物体惯性大小的量度,质量大则惯性大,其运动状态难以改变。(3)外力作用于物体上能使物体的运动状态改变,但不能认为克服了物体的惯性。【例1】下列关于惯性的说法中正确的是物体只有静止或做匀速直线运动时才有惯性物体只有受外力作用时才有惯性物体的运动速度大时惯性大 物体在任何情况下都有惯性点评:处理有关惯性问题,必须深刻理解惯性的物理意义,抛开表面现象,抓住问题本质。【例2】关于牛顿第一定律的下列
4、说法中,正确的是A牛顿第一定律是实验定律B 牛顿第一定律说明力是改变物体运动状态的原因C惯性定律与惯性的实质是相同的D 物体的运动不需要力来维持【例3】在一艘匀速向北行驶的轮船甲板上,一运动员做立定跳远,若向各个方向都用相同的力,则 ( )A向北跳最远 B向南跳最远C向东向西跳一样远,但没有向南跳远 D 无论向哪个方向都一样远点评:此题主要考查对惯性及惯性定律的理解,解答此题的关键是理解运动员起跳过程中,水平方向若不受外力作用将保持原有匀速运动的惯性,从而选出正确答案【例4】某人用力推原来静止在水平面上的小车,使小车开始运动,此后改用较小的力就可以维持小车做匀速直线运动,可见( )A力是使物体
5、产生运动的原因B力是维持物体运动速度的原因C 力是使物体速度发生改变的原因D力是使物体惯性改变的原因【例5】如图中的甲图所示,重球系于线DC下端,重球下再系一根同样的线BA,下面说法中正确的是( )A 在线的A端慢慢增加拉力,结果CD线拉断B在线的A端慢慢增加拉力,结果AB线拉断C 在线的A端突然猛力一拉,结果AB线拉断D在线的A端突然猛力一拉,结果CD线拉断二、牛顿第三定律1 对牛顿第三定律理解应注意:(1)两个物体之间的作用力和反作用力总是大小相等,方向相反,作用在一条上(2)作用力与反作用力总是成对出现同时产生,同时变化,同时消失(3)作用力和反作用力在两个不同的物体上,各产生其效果,永
6、远不会抵消(4)作用力和反作用力是同一性质的力(5)物体间的相互作用力既可以是接触力,也可以是“场”力定律内容可归纳为:同时、同性、异物、等值、反向、共线2区分一对作用力反作用力和一对平衡力一对作用力反作用力和一对平衡力的共同点有:大小相等、方向相反、作用在同一条直线上。不同点有:作用力反作用力作用在两个不同物体上,而平衡力作用在同一个物体上;作用力反作用力一定是同种性质的力,而平衡力可能是不同性质的力;作用力反作用力一定是同时产生同时消失的,而平衡力中的一个消失后,另一个可能仍然存在。一对作用力和反作用力一对平衡力作用对象两个物体同一个物体作用时间同时产生,同时消失不一定同时产生或消失力的性
7、质一定是同性质的力不一定是同性质的力力的大小关系大小相等大小相等力的方向关系方向相反且共线方向相反且共线3一对作用力和反作用力的冲量和功一对作用力和反作用力在同一个过程中(同一段时间或同一段位移)的总冲量一定为零,但作的总功可能为零、可能为正、也可能为负。这是因为作用力和反作用力的作用时间一定是相同的,而位移大小、方向都可能是不同的。【例6】汽车拉着拖车在水平道路上沿直线加速行驶,根据牛顿运动定律可知( )A汽车拉拖车的力大于拖车拉汽车的力B 汽车拉拖车的力等于拖车拉汽车的力C 汽车拉拖车的力大于拖车受到的阻力D汽车拉拖车的力等于拖车受到的阻力【例7】甲、乙二人拔河,甲拉动乙向左运动,下面说法
8、中正确的是A 做匀速运动时,甲、乙二人对绳的拉力大小一定相等B不论做何种运动,根据牛顿第三定律,甲、乙二人对绳的拉力大小一定相等C 绳的质量可以忽略不计时,甲乙二人对绳的拉力大小一定相等D绳的质量不能忽略不计时,甲对绳的拉力一定大于乙对绳的拉力【例8】物体静止在斜面上,以下几种分析中正确的是A物体受到的静摩擦力的反作用力是重力沿斜面的分力B物体所受重力沿垂直于斜面的分力就是物体对斜面的压力C物体所受重力的反作用力就是斜面对它的静摩擦力和支持力这两个力的合力D 物体受到的支持力的反作用力,就是物体对斜面的压力【例9】人走路时,人和地球间的作用力和反作用力的对数有A一对 B二对 C 三对 D四对【
9、例10】物体静止于水平桌面上,则 桌面对物体的支持力的大小等于物体的重力,这两个力是一对平衡力物体所受的重力和桌面对它的支持力是一对作用力与反作用力物体对桌面的压力就是物体的重力,这两个力是同一种性质的力物体对桌面的压力和桌面对物体的支持力是一对平衡的力点评: (1)一对作用力和反作用力与一对平衡力的最直观的区别就是:看作用点,二力平衡时此两力作用点一定是同一物体;作用力和反作用力的作用点一定是分别在两个物体上(2)两个力是否是“作用力和反作用力”的最直观区别是:看它们是否是因相互作用而产生的如B选项中的重力和支持力,由于重力不是因支持才产生的,因此,这一对力不是作用力和反作用力三、针对训练1
10、火车在长直水平轨道上匀速行驶,坐在门窗密闭的车厢内的一人将手中的钥匙相对车竖直上抛,当钥匙(相对车)落下来时( )A落在手的后方 B落在在手的前方 C落在手中 D无法确定2根据牛顿第一定律,我们可以得到如下的推论 ( )A静止的物体一定不受其它外力作用B惯性就是质量,惯性是一种保持匀速运动或静止状态的特性C物体的运动状态发生了改变,必定受到外力的作用D力停止作用后,物体就慢慢停下来3关于物体的惯性,下列说法中正确的是( )A只有处于静止或匀速运动状态的物体才具有惯性B只有运动的物体才能表现出它的惯性C物体做变速运动时,其惯性不断变化D以上结论不正确4伽利略的理想实验证明了( )A要物体运动必须
11、有力作用,没有力作用物体将静止B要物体静止必须有力作用,没有力作用物体就运动C物体不受外力作用时,一定处于静止状态D物体不受外力作用时,总保持原来的匀速直线运动或静止状态5关于惯性,下述哪些说法是正确的( )A惯性除了跟物体质量有关外,还跟物体速度有关B物体只有在不受外力作用的情况下才能表现出惯性C乒乓球可快速抽杀,是因为乒乓球的惯性小的缘故D战斗机投人战斗时,必须丢掉副油箱,减小惯性以保证其运动的灵活性6如图所示,一个劈形物体M放在固定的粗糙的斜面上,上面成水平在水平面上放一光滑小球m,劈形物体从静止开始释放,则小球在碰到斜面前的运动轨迹是( )A沿斜面向下的直线 B竖直向下的直线C无规则曲
12、线 D抛物线7关于作用力与反作用力以及相互平衡的两个力的下列说法中,正确的是( )A作用力与反作用力一定是同一性质的力B作用力与反作用力大小相等,方向相反,因而可以互相抵消C相互平衡的两个力的性质,可以相同,也可以不同D相互平衡的两个力大小相等,方向相反,同时出现,同时消失8质量为M的木块静止在倾角为的斜面上,设物体与斜面间的动摩擦因数为,则下列说法正确的是 ( )A木块受重力,斜面对它的支持力和摩擦力的作用B木块对斜面的压力与斜面对木块的支持力大小相等,方向相反C斜面对木块的摩擦力与重力沿科面向下的分力Mgsin大小相等,方向相反D斜面对木块的摩擦力大小可以写成Mgcos9下面关于惯性的说法
13、中,正确的是A运动速度大的物体比速度小的物体难以停下来,所以运动速度大的物体具有较大的惯性B物体受的力越大,要它停下来就越困难,所以物体受的推力越大,则惯性越大C物体的体积越大,惯性越大D物体含的物质越多,惯性越大10关于作用力与反作用力,下列说法中正确的有A物体相互作用时,先有作用力,后有反作用力B作用力与反作用力大小相等,方向相反,作用在同一直线上,因而这二力平衡C作用力与反作用力可以是不同性质的力,例如,作用力是弹力,其反作用力可能是摩擦力D作用力和反作用力总是同时分别作用在相互作用的两个物体上11(2002年春上海大综试题)根据牛顿运动定律,以下选项中正确的是A人只有在静止的车厢内,竖
14、直向上高高跳起后,才会落在车厢的原来位置B人在沿直线匀速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方C人在沿直线加速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方D人在沿直线减速前进的车厢内,竖直向上高高跳起后,将落在起跳点的后方12关于物体的惯性,下列说法正确的是A只有处于静止或匀速直线运动的物体才具有惯性B只有运动的物体才能表现出它的惯性C物体做变速运动时,其惯性不断变化D以上说法均不正确13下列现象中能直接由牛顿第一定律解释的是A竖直上升的气球上掉下的物体,仍能继续上升一定高度后才竖直下落B水平匀速飞行的飞机上释放的物体,从飞机上看是做自由落体运动C水平公路上运动的卡车,速
15、度逐渐减小直至停止D用力将完好的鸡蛋敲碎14火车在平直轨道上匀速行驶,门窗紧闭的车厢内有一人向上跳起,发现仍落回车上原处,这是因为A人跳起时,车厢内的空气给他以向前的力,带着他随同火车一起向前运动B人跳起瞬间,车厢地板给他一个向前的力,推动他随同火车一起向前运动C人跳起后,车在继续向前运动,所以人落下必定偏后一些,只是由于时间很短,偏后距离太小,不明显而已D人跳起后直到落地,在水平方向上保持与车相同的速度15大人拉小孩,下列说法正确的是A当小孩被大人拉走时,大人拉力大于小孩拉力B当小孩赖着不动时,大人拉力大于小孩的拉力C不管什么情况下,大人拉力总大于小孩的拉力,因为大人的力气总比小孩大D不管什
16、么情况下,大人拉力与小孩拉力大小相等参考答案:1C 2C 3D 4D 5CD 6B 7AC 8ABC 9D 10D 11C 12D 13AB 14D 15D 教学反馈 动力学是力与运动学的结合,经过前两章的复习以及学生在高一所学的基础上,从课堂气氛可以反映出学生已经进入高三复习状态,从学生反映看,学生对牛顿运动定律很熟悉,区分作用力反作用力与一对平衡力部分学生还掌握不是很好,但是这些主要靠记忆,相信学生通过复习应该能加深印象。 牛顿第二定律目标:1理解牛顿第二定律,能够运用牛顿第二定律解决力学问题2理解力与运动的关系,会进行相关的判断3掌握应用牛顿第二定律分析问题的基本方法和基本技能重点:理解
17、牛顿第二定律难点: 力与运动的关系方法:讲练结合,计算机辅助教学过程:一、牛 顿 第 二 定 律1定律的表述物体的加速度跟所受的外力的合力成正比,跟物体的质量成反比,加速度的方向跟合力的方向相同,即F=ma (其中的F和m、a必须相对应)点评:特别要注意表述的第三句话。因为力和加速度都是矢量,它们的关系除了数量大小的关系外,还有方向之间的关系。明确力和加速度方向,也是正确列出方程的重要环节。若F为物体受的合外力,那么a表示物体的实际加速度;若F为物体受的某一个方向上的所有力的合力,那么a表示物体在该方向上的分加速度;若F为物体受的若干力中的某一个力,那么a仅表示该力产生的加速度,不是物体的实际
18、加速度。2对定律的理解:(1)瞬时性:加速度与合外力在每个瞬时都有大小、方向上的对应关系,这种对应关系表现为:合外力恒定不变时,加速度也保持不变。合外力变化时加速度也随之变化。合外力为零时,加速度也为零。(2)矢量性:牛顿第二定律公式是矢量式。公式只表示加速度与合外力的大小关系.矢量式的含义在于加速度的方向与合外力的方向始终一致.(3)同一性:加速度与合外力及质量的关系,是对同一个物体(或物体系)而言。即 F与a均是对同一个研究对象而言。 (4)相对性:牛顿第二定律只适用于惯性参照系。(5)局限性:牛顿第二定律只适用于低速运动的宏观物体,不适用于高速运动的微观粒子。3牛顿第二定律确立了力和运动
19、的关系牛顿第二定律明确了物体的受力情况和运动情况之间的定量关系。联系物体的受力情况和运动情况的桥梁或纽带就是加速度。4应用牛顿第二定律解题的步骤(1)明确研究对象。可以以某一个物体为对象,也可以以几个物体组成的质点组为对象。设每个质点的质量为mi,对应的加速度为ai,则有: F合=m1a1+m2a2+m3a3+mnan对这个结论可以这样理解:先分别以质点组中的每个物体为研究对象用牛顿第二定律: F1=m1a1,F2=m2a2,Fn=mnan,将以上各式等号左、右分别相加,其中左边所有力中,凡属于系统内力的,总是成对出现并且大小相等方向相反的,其矢量和必为零,所以最后得到的是该质点组所受的所有外
20、力之和,即合外力F。 (2)对研究对象进行受力分析。同时还应该分析研究对象的运动情况(包括速度、加速度),并把速度、加速度的方向在受力图旁边画出来。 (3)若研究对象在不共线的两个力作用下做加速运动,一般用平行四边形定则(或三角形定则)解题;若研究对象在不共线的三个以上的力作用下做加速运动,一般用正交分解法解题(注意灵活选取坐标轴的方向,既可以分解力,也可以分解加速度)。 (4)当研究对象在研究过程的不同阶段受力情况有变化时,那就必须分阶段进行受力分析,分阶段列方程求解。解题要养成良好的习惯。只要严格按照以上步骤解题,同时认真画出受力分析图,标出运动情况,那么问题都能迎刃而解。二、应用举例1力
21、与运动关系的定性分析【例1】 如图所示,如图所示,轻弹簧下端固定在水平面上。一个小球从弹簧正上方某一高度处由静止开始自由下落,接触弹簧后把弹簧压缩到一定程度后停止下落。在小球下落的这一全过程中,下列说法中正确的是A小球刚接触弹簧瞬间速度最大B从小球接触弹簧起加速度变为竖直向上C 从小球接触弹簧到到达最低点,小球的速度先增大后减小D 从小球接触弹簧到到达最低点,小球的加速度先减小后增大【例2】如图所示弹簧左端固定,右端自由伸长到O点并系住物体m现将弹簧压缩到A点,然后释放,物体一直可以运动到B点如果物体受到的阻力恒定,则A 物体从A到O先加速后减速B物体从A到O加速运动,从O到B减速运动C 物体
22、运动到O点时所受合力为零点评:(1)解答此题容易犯的错误就是认为弹簧无形变时物体的速度最大,加速度为零这显然是没对物理过程认真分析,靠定势思维得出的结论要学会分析动态变化过程,分析时要先在脑子里建立起一幅较为清晰的动态图景,再运用概念和规律进行推理和判断(2)通过此题,可加深对牛顿第二定律中合外力与加速度间的瞬时关系的理解,加深对速度和加速度间关系的理解譬如,本题中物体在初始阶段,尽管加速度在逐渐减小,但由于它与速度同向,所以速度仍继续增大2牛顿第二定律的瞬时性【例3】(2001年上海高考题)如图(1)所示,一质量为m的物体系于长度分别为L1 、L2的两根细线上,L1的一端悬挂在天花板上,与竖
23、直方向夹角为,L2水平拉直,物体处于平衡状态。现将L2线剪断,求剪断瞬时物体的加速度。(1)下面是某同学对该题的某种解法:解:设L1线上拉力为T1,L2线上拉力为T2,重力为mg,物体在三力作用下处于平衡。mg,解得 =mgtan,剪断线的瞬间,T2突然消失,物体却在T2反方向获得加速度,因为mgtan=ma所以加速度a=gtan,方向在T2反方向。你认为这个结果正确吗?说明理由。(2)若将图(1)中的细线L1改为长度相同,质量不计的轻弹簧,如图(2)所示,其它条件不变,求解的步骤和结果与(1)完全相同,即a=gtan,你认为这个结果正确吗?请说明理由。 点评:牛顿第二定律F合ma反映了物体的
24、加速度a跟它所受合外力的瞬时对应关系物体受到外力作用,同时产生了相应的加速度,外力恒定不变,物体的加速度也恒定不变;外力随着时间改变时,加速度也随着时间改变;某一时刻,外力停止作用,其加速度也同时消失3正交分解法【例4】如图所示,质量为4 kg的物体静止于水平面上,物体与水平面间的动摩擦因数为0.5,物体受到大小为20,与水平方向成30角斜向上的拉力F作用时沿水平面做匀加速运动,求物体的加速度是多大?(g取10 m/s2) 点评:当物体的受力情况较复杂时,根据物体所受力的具体情况和运动情况建立合适的直角坐标系,利用正交分解法来解4合成法与分解法【例5】如图所示,沿水平方向做匀变速直线运动的车厢
25、中,悬挂小球的悬线偏离竖直方向37角,球和车厢相对静止,球的质量为1kg(g10m/s2,sin370.6,cos370.8)(1)求车厢运动的加速度并说明车厢的运动情况(2)求悬线对球的拉力 点评:本题解题的关键是根据小球的加速度方向,判断出物体所受合外力的方向,然后画出平行四边形,解其中的三角形就可求得结果【例6】如图所示, m =4kg的小球挂在小车后壁上,细线与竖直方向成37角。求:(1)小车以a=g向右加速;(2)小车以a=g向右减速时,细线对小球的拉力F1和后壁对小球的压力F2各多大? 解析:(1)向右加速时小球对后壁必然有压力,球在三个共点力作用下向右加速。合外力向右,F2向右,
26、因此G和F1的合力一定水平向左,所以 F1的大小可以用平行四边形定则求出:F1=50N,可见向右加速时F1的大小与a无关;F2可在水平方向上用牛顿第二定律列方程:F2-0.75G =ma计算得F2=70N。可以看出F2将随a的增大而增大。(这种情况下用平行四边形定则比用正交分解法简单。) (2)必须注意到:向右减速时,F2有可能减为零,这时小球将离开后壁而“飞”起来。这时细线跟竖直方向的夹角会改变,因此F1的方向会改变。所以必须先求出这个临界值。当时G和F1的合力刚好等于ma,所以a的临界值为。当a=g时小球必将离开后壁。不难看出,这时F1=mg=56N, F2=0【例7】如图所示,在箱内倾角
27、为的固定光滑斜面上用平行于斜面的细线固定一质量为m的木块。求:(1)箱以加速度a匀加速上升,(2)箱以加速度a向左匀加速运动时,线对木块的拉力F1和斜面对箱的压力F2各多大?点评:还应该注意到F1的表达式F1=m(gsin-acos)显示其有可能得负值,这意味着绳对木块的力是推力,这是不可能的。这里又有一个临界值的问题:当向左的加速度agtan时F1=m(gsin-acos)沿绳向斜上方;当agtan时木块和斜面不再保持相对静止,而是相对于斜面向上滑动,绳子松弛,拉力为零。5在动力学问题中的综合应用【例7】 如图所示,质量m=4kg的物体与地面间的动摩擦因数为=0.5,在与水平成=37角的恒力
28、F作用下,从静止起向右前进t1=2.0s后撤去F,又经过t2=4.0s物体刚好停下。求:F的大小、最大速度vm、总位移s。 点评:需要引起注意的是:在撤去拉力F前后,物体受的摩擦力发生了改变。可见,在动力学问题中应用牛顿第二定律,正确的受力分析和运动分析是解题的关键,求解加速度是解决问题的纽带,要牢牢地把握住这一解题的基本方法和基本思路。我本在下一专题将详细研究这一问题。三、针对训练1下列关于力和运动关系的几种说法中,正确的是A物体所受合外力的方向,就是物体运动的方向B物体所受合外力不为零时,其速度不可能为零C物体所受合外力不为零,其加速度一定不为零D合外力变小的,物体一定做减速运动2放在光滑
29、水平面上的物体,在水平方向的两个平衡力作用下处于静止状态,若其中一个力逐渐减小到零后,又恢复到原值,则该物体的A速度先增大后减小 B速度一直增大,直到某个定值C加速度先增大,后减小到零 D加速度一直增大到某个定值3下列对牛顿第二定律的表达式Fma及其变形公式的理解,正确的是 A由Fma可知,物体所受的合外力与物体的质量成正比,与物体的加速度成反比B由可知,物体的质量与其所受合外力成正比,与其运动的加速度成反比 C由可知,物体的加速度与其所受合外力成正比,与其质量成反比 D由可知,物体的质量可以通过测量它的加速度和它所受到的合外力而求得4在牛顿第二定律的数学表达式Fkma中,有关比例系数k的说法
30、正确的是A在任何情况下k都等于1 B因为k,所以k可有可无Ck的数值由质量、加速度和力的大小决定 Dk的数值由质量、加速度和力的单位决定5对静止在光滑水平面上的物体施加一水平拉力,当力刚开始作用的瞬间A物体立即获得速度 物体立即获得加速度C物体同时获得速度和加速度 D由于物体未来得及运动,所以速度和加速度都为零6质量为1kg的物体受到两个大小分别为2和2的共点力作用,则物体的加速度大小可能是A5 m/s2 B3 m/s 2 C2 m/s 2 D0.5 m/s 27如图所示,质量为10kg的物体,在水平地面上向左运动物体与水平面间的动摩擦因数为0.2与此同时,物体受到一个水平向右的推力F20N的
31、作用,则物体的加速度为(g取10 m/s2)A0 B4 m/s2,水平向右C2 m/s2,水平向右 D2 m/s2,水平向左8质量为的物体放在粗糙的水平面上,水平拉力F作用于物体上,物体产生的加速度为a,若作用在物体上的水平拉力变为2 F,则物体产生的加速度A小于a B等于aC在a和2a之间 D大于2a9物体在力F作用下做加速运动,当力F逐渐减小时,物体的加速度_,速度_;当F减小到0时,物体的加速度将_,速度将_(填变大、变小、不变、最大、最小和零)等10如图所示,物体A、B用弹簧相连,mB=2mA, A、B与地面间的动摩擦因数相同,均为,在力F作用下,物体系统做匀速运动,在力F撤去的瞬间,
32、A的加速度为_,B的加速度为_(以原来的方向为正方向)11甲、乙两物体的质量之比为53,所受外力大小之比为23,则甲、乙两物体加速度大小之比为 12质量为8103 kg的汽车,以1.5 m/s2的加速度沿水平路面加速,阻力为2.5103,那么汽车的牵引力为 13质量为1.0 kg的物体,其速度图像如图所示,4s内物体所受合外力的最大值是 N;合外力方向与运动方向相反时,合外力大小为 14在质量为M的气球下面吊一质量为m的物体匀速上升某时刻悬挂物体的绳子断了,若空气阻力不计,物体所受的浮力大小不计,求气球上升的加速度参考答案:1.C 2.BC 3.CD 4.D 5.B 6.ABC 7.B 8.D
33、 9变小、增大、为零、不变 100;g 11. 25 12. 1.45104 13.4 2 14. 教学后记 学生通过复习掌握了解决动力学两类问题的方法,但是对于比较复杂的综合性题目,学生解起来有一定的难度,在以后的复习中应注意加强训练。 牛顿运动定律的应用教学目标:1掌握运用牛顿三定律解决动力学问题的基本方法、步骤2学会用整体法、隔离法进行受力分析,并熟练应用牛顿定律求解3理解超重、失重的概念,并能解决有关的问题4掌握应用牛顿运动定律分析问题的基本方法和基本技能教学重点:牛顿运动定律的综合应用教学难点: 受力分析,牛顿第二定律在实际问题中的应用教学方法:讲练结合,计算机辅助教学教学过程:一、
34、牛顿运动定律在动力学问题中的应用1运用牛顿运动定律解决的动力学问题常常可以分为两种类型(两类动力学基本问题):(1)已知物体的受力情况,要求物体的运动情况如物体运动的位移、速度及时间等(2)已知物体的运动情况,要求物体的受力情况(求力的大小和方向)但不管哪种类型,一般总是先根据已知条件求出物体运动的加速度,然后再由此得出问题的答案两类动力学基本问题的解题思路图解如下:牛顿第二定律加速度a运动学公式运动情况第一类问题受力情况加速度a另一类问题牛顿第二定律运动学公式可见,不论求解那一类问题,求解加速度是解题的桥梁和纽带,是顺利求解的关键。点评:我们遇到的问题中,物体受力情况一般不变,即受恒力作用,
35、物体做匀变速直线运动,故常用的运动学公式为匀变速直线运动公式,如等.2应用牛顿运动定律解题的一般步骤(1)认真分析题意,明确已知条件和所求量,搞清所求问题的类型。(2)选取研究对象.所选取的研究对象可以是一个物体,也可以是几个物体组成的整体.同一题目,根据题意和解题需要也可以先后选取不同的研究对象。(3)分析研究对象的受力情况和运动情况。(4)当研究对象所受的外力不在一条直线上时:如果物体只受两个力,可以用平行四边形定则求其合力;如果物体受力较多,一般把它们正交分解到两个方向上去分别求合力;如果物体做直线运动,一般把各个力分解到沿运动方向和垂直运动的方向上。(5)根据牛顿第二定律和运动学公式列
36、方程,物体所受外力、加速度、速度等都可根据规定的正方向按正、负值代入公式,按代数和进行运算。(6)求解方程,检验结果,必要时对结果进行讨论。3应用例析【例1】一斜面AB长为10m,倾角为30,一质量为2kg的小物体(大小不计)从斜面顶端A点由静止开始下滑,如图所示(g取10 m/s2)(1)若斜面与物体间的动摩擦因数为0.5,求小物体下滑到斜面底端B点时的速度及所用时间(2)若给小物体一个沿斜面向下的初速度,恰能沿斜面匀速下滑,则小物体与斜面间的动摩擦因数是多少? 【例2】如图所示,一高度为h=0.8m粗糙的水平面在B点处与一倾角为=30光滑的斜面BC连接,一小滑块从水平面上的A点以v0=3m
37、/s的速度在粗糙的水平面上向右运动。运动到B点时小滑块恰能沿光滑斜面下滑。已知AB间的距离s=5m,求:(1)小滑块与水平面间的动摩擦因数;(2)小滑块从A点运动到地面所需的时间;【例3】静止在水平地面上的物体的质量为2 kg,在水平恒力F推动下开始运动,4 s末它的速度达到4m/s,此时将F撤去,又经6 s物体停下来,如果物体与地面的动摩擦因数不变,求F的大小。点评:解决动力学问题时,受力分析是关键,对物体运动情况的分析同样重要,特别是像这类运动过程较复杂的问题,更应注意对运动过程的分析。在分析物体的运动过程时,一定弄清整个运动过程中物体的加速度是否相同,若不同,必须分段处理,加速度改变时的
38、瞬时速度即是前后过程的联系量。分析受力时要注意前后过程中哪些力发生了变化,哪些力没发生变化。四、连接体(质点组)在应用牛顿第二定律解题时,有时为了方便,可以取一组物体(一组质点)为研究对象。这一组物体一般具有相同的速度和加速度,但也可以有不同的速度和加速度。以质点组为研究对象的好处是可以不考虑组内各物体间的相互作用,这往往给解题带来很大方便。使解题过程简单明了。二、整体法与隔离法1整体法:在研究物理问题时,把所研究的对象作为一个整体来处理的方法称为整体法。采用整体法时不仅可以把几个物体作为整体,也可以把几个物理过程作为一个整体,采用整体法可以避免对整体内部进行繁锁的分析,常常使问题解答更简便、
39、明了。运用整体法解题的基本步骤:(1)明确研究的系统或运动的全过程.(2)画出系统的受力图和运动全过程的示意图.(3)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解2隔离法:把所研究对象从整体中隔离出来进行研究,最终得出结论的方法称为隔离法。可以把整个物体隔离成几个部分来处理,也可以把整个过程隔离成几个阶段来处理,还可以对同一个物体,同一过程中不同物理量的变化进行分别处理。采用隔离物体法能排除与研究对象无关的因素,使事物的特征明显地显示出来,从而进行有效的处理。运用隔离法解题的基本步骤:(1)明确研究对象或过程、状态,选择隔离对象.选择原则是:一要包含待求量,二是所选隔离对象和所列
40、方程数尽可能少。(2)将研究对象从系统中隔离出来;或将研究的某状态、某过程从运动的全过程中隔离出来。(3)对隔离出的研究对象、过程、状态分析研究,画出某状态下的受力图或某阶段的运动过程示意图。(4)寻找未知量与已知量之间的关系,选择适当的物理规律列方程求解。3整体和局部是相对统一相辅相成的隔离法与整体法,不是相互对立的,一般问题的求解中,随着研究对象的转化,往往两种方法交叉运用,相辅相成.所以,两种方法的取舍,并无绝对的界限,必须具体分析,灵活运用.无论哪种方法均以尽可能避免或减少非待求量(即中间未知量的出现,如非待求的力,非待求的中间状态或过程等)的出现为原则4应用例析【例4】如图所示,A、
41、B两木块的质量分别为mA、mB,在水平推力F作用下沿光滑水平面匀加速向右运动,求A、B间的弹力FN。点评:这个结论还可以推广到水平面粗糙时(A、B与水平面间相同);也可以推广到沿斜面方向推A、B向上加速的问题,有趣的是,答案是完全一样的。【例5】如图所示,质量为2m的物块A和质量为m的物块B与地面的摩擦均不计.在已知水平推力F的作用下,A、B做加速运动.A对B的作用力为多大?点评:对连结体(多个相互关联的物体)问题,通常先取整体为研究对象,然后再根据要求的问题取某一个物体为研究对象.AB F【例6】 如图,倾角为的斜面与水平面间、斜面与质量为m的木块间的动摩擦因数均为,木块由静止开始沿斜面加速
42、下滑时斜面始终保持静止。求水平面给斜面的摩擦力大小和方向。【例7】如图所示,mA=1kg,mB=2kg,A、B间静摩擦力的最大值是5N,水平面光滑。用水平力F拉B,当拉力大小分别是F=10N和F=20N时,A、B的加速度各多大?【例8】如图所示,质量为M的木箱放在水平面上,木箱中的立杆上套着一个质量为m的小球,开始时小球在杆的顶端,由静止释放后,小球沿杆下滑的加速度为重力加速度的,即a=g,则小球在下滑的过程中,木箱对地面的压力为多少? 命题意图:考查对牛顿第二定律的理解运用能力及灵活选取研究对象的能力.B级要求.错解分析:(1)部分考生习惯于具有相同加速度连接体问题演练,对于“一动一静”连续
43、体问题难以对其隔离,列出正确方程.(2)思维缺乏创新,对整体法列出的方程感到疑惑.三、临界问题在某些物理情境中,物体运动状态变化的过程中,由于条件的变化,会出现两种状态的衔接,两种现象的分界,同时使某个物理量在特定状态时,具有最大值或最小值。这类问题称为临界问题。在解决临界问题时,进行正确的受力分析和运动分析,找出临界状态是解题的关键。【例9】一个质量为0.2 kg的小球用细线吊在倾角=53的斜面顶端,如图,斜面静止时,球紧靠在斜面上,绳与斜面平行,不计摩擦,当斜面以10 m/s2的加速度向右做加速运动时,求绳的拉力及斜面对小球的弹力.命题意图:考查对牛顿第二定律的理解应用能力、分析推理能力及
44、临界条件的挖掘能力。四、超重、失重和视重1超重现象:物体对支持物的压力(或对悬挂物的拉力) 大于 物体所受重力的情况称为超重现象。产生超重现象的条件是物体具有 向上 的加速度。与物体速度的大小和方向无关。产生超重现象的原因:当物体具有向上的加速度a(向上加速运动或向下减速运动)时,支持物对物体的支持力(或悬挂物对物体的拉力)为F,由牛顿第二定律得Fmgma所以Fm(ga)mg由牛顿第三定律知,物体对支持物的压力(或对悬挂物的拉力)F mg.2失重现象:物体对支持物的压力(或对悬挂物的拉力) 小于 物体所受重力的情况称为失重现象。产生失重现象的条件是物体具有 向下 的加速度,与物体速度的大小和方向无关.产生失重现象