1、频数与频率一、选择题1. (2013湖南娄底,8,3分)课间休息,小亮与小明一起玩“剪刀、石头、布”的游戏,小明出“剪刀”的概率是()ABCD考点:概率公式分析:游戏中一共有3种情况:“剪刀”、“石头”、“布”,其中是“剪刀”的情况只有一种利用概率公式进行计算即可解答:解:小亮与小明一起玩“剪刀、石头、布”的游戏,一共有3种情况:“剪刀”、“石头”、“布”,并且每一种情况出现的可能性相同,所以小明出“剪刀”的概率是故选B点评:本题考查了概率公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2(2013聊城,10,3分)某校七年级共320名
2、学生参加数学测试,随机抽取50名学生的成绩进行统计,其中15名学生成绩达到优秀,估计该校七年级学生在这次数学测试中达到优秀的人数大约有()A50人 B64人 C90人 D96人考点:用样本估计总体分析:随机抽取的50名学生的成绩是一个样本,可以用这个样本的优秀率去估计总体的优秀率,从而求得该校七年级学生在这次数学测试中达到优秀的人数解答:解:随机抽取了50名学生的成绩进行统计,共有15名学生成绩达到优秀,样本优秀率为:155030%,又某校七年级共320名学生参加数学测试,该校七年级学生在这次数学测试中达到优秀的人数为:32030%96人点评:本题考查了用样本估计总体,这是统计的基本思想一般来
3、说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确3(2013泰安,7,3分)实验学校九年级一班十名同学定点投篮测试,每人投篮六次,投中的次数统计如下:5,4,3,5,5,2,5,3,4,1,则这组数据的中位数,众数分别为()A4,5 B5,4 C4,4 D5,5考点:众数;中位数分析:根据众数及中位数的定义,结合所给数据即可作出判断解答:解:将数据从小到大排列为:1,2,3,3,4,4,5,5,5,5,这组数据的众数为:5;中位数为:4故选A点评:本题考查了众数、中位数的知识,解答本题的关键是掌握众数及中位数的定义4(2013潍坊,5,3分)在某校“我的中国梦”演
4、讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )A众数 B方差 C平均数 D中位数答案:D考点:统计量数的含义点评:本题要求学生结合具体情境辨析不同的集中量数各自的意义和作用,从而选择恰当的统计量为给定的题意提供所需的集中量数,进而为现实问题的解决提供理论支撑与单纯考查统计量数的计算相比较,这样更能考查出学生对统计量数的意义的认识程度5(2013鞍山,2,2分)一组数据2,4,5,5,6的众数是()A2 B4 C5 D6考点:众数分析:根据众数的定义解答即可解答:解:在2,4,5,5,6中,5
5、出现了两次,次数最多,故众数为5故选C点评:此题考查了众数的概念一组数据中,出现次数最多的数位众数,众数可以有多个6(2013鞍山,7,2分)甲、乙、丙、丁四位选手各10次射击成绩的平均数和方差如下表:则这四人中成绩发挥最稳定的是()A甲 B乙 C丙 D丁考点:方差专题:图表型分析:根据方差的定义,方差越小数据越稳定解答:解:因为S甲2S丁2S丙2S乙2,方差最小的为乙,所以本题中成绩比较稳定的是乙故选B点评:本题考查方差的意义方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波
6、动越小,数据越稳定7(2013济宁,6,3分)下列说法正确的是()A中位数就是一组数据中最中间的一个数B8,9,9,10,10,11这组数据的众数是9C如果x1,x2,x3,xn的平均数是,那么(x1)(x2)(xn)=0D一组数据的方差是这组数据的极差的平方考点:方差;算术平均数;中位数;众数;极差分析:根据中位数以及众数和平均数和极差、方差的定义分别判断得出即可解答:解:A当数据是奇数个时,按大小排列后,中位数就是一组数据中最中间的一个数,数据个数为偶数个时,按大小排列后,最中间的两个的平均数是中位数,故此选项错误;B8,9,9,10,10,11这组数据的众数是9和10,故此选项错误;C如
7、果x1,x2,x3,xn的平均数是,那么(x1)(x2)(xn)=x1x2x3xnn=0,故此选项正确;D一组数据的方差与极差没有关系,故此选项错误;故选:C点评:此题主要考查了中位数以及众数和平均数和极差、方差的定义,根据定义举出反例是解题关键8. 2013浙江丽水3分)王老师对本班40名学生的血型作了统计,列出如下的统计表,则本班A型血的人数是A. 16人 B. 14人C. 4人 D. 6人二、填空题1. (2013江苏扬州,12,3分)为了估计鱼塘中鱼的条数,养鱼者首先从鱼塘中打捞30条鱼做上标记,然后放归鱼塘经过一段时间,等有标记的鱼完全混合于鱼群中,再打捞200条鱼,发现其中有标记的
8、鱼有5条,则鱼塘中估计有 条鱼【答案】1200【解析】解法一:打捞200条鱼,发现其中带标记的鱼有5条,有标记的鱼占100%=2.5%共有30条鱼做上标记,鱼塘中估计有302.5%=1200(条)所以应填1200解法二:设鱼塘中鱼的数目为x条,根据题意,得=解得x=1200所以应填1200【方法指导】先打捞200条鱼,发现其中带标记的鱼有5条,求出有标记的鱼占的百分比,再根据共有30条鱼做上标记,即可得出答案【易错警示】不明确题意,不知道解答方法而出错组别成绩(分)频数A20x242B24x283C28x325D32x36bE36x4020合 计a2. (2013湖南长沙,17,3分)在一个不
9、透明的盒子中装有n个小球,它们只有颜色上的区别,其中有2个红球,每次摸球前先将盒中的球摇匀,随机摸出一个球记下颜色后再放回盒中,通过大量重复摸球实验后发现,摸到红的频率稳定于0.2,那么可以推算出n大约是 .3(2013东营,14,4分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 答案: 2解析:因为众数是a,故由题意得a=2,把这组数据按从小到大排列得:1,2,2,2,3,5,故中位数是中间两个数的平均数,即点拨:求一组数据的中位数应先将所有数据按由小到大(或由大到小)排列。若数据个数为奇数,则中间位置的数据是中位数;若数据个数为偶数,则处于中间位置的两个数据的平均数是中位
10、数。4(2013东营,14,4分)一组数据1,3,2,5,2,a的众数是a,这组数据的中位数是 答案: 2解析:因为众数是a,故由题意得a=2,把这组数据按从小到大排列得:1,2,2,2,3,5,故中位数是中间两个数的平均数,即点拨:求一组数据的中位数应先将所有数据按由小到大(或由大到小)排列。若数据个数为奇数,则中间位置的数据是中位数;若数据个数为偶数,则处于中间位置的两个数据的平均数是中位数。5(2013上海市,13,4分)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图2所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_三.解答题1(2013浙江台州,21,10分)有一
11、学校为了解九年级学生某次体育测试成绩,现对这次体育测试成绩进行抽样调查,结果统计如下,其中扇形统计图中C组所在扇形的圆心角为36被抽取的体育测试成绩频数分布表 被抽取的体育测试成绩扇形统计图ABCDEA 20x24B 24x28C 28x32D 32x36E 36x40根据上面图表提供的信息,回答下列问题:(1)计算频数分布表中a与b的值;(2)根据C组28x32的组中值30,估计C组中所有数据的和为 ;(3)请估计该校九年级学生这次体育测试成绩的平均分(结果取整数)【思路分析】(1)a表示所抽取的总人数,应用C组的人数除以C组占总体的百分比;b表示D组的人数,用总人数减去其他各组的人数即可;
12、(2)利用组中值代表小组内每一名学生的成绩,那么C组中所有数据的和就是组中值乘以人数;(3)平均分等于总成绩除以总人数,其中总成绩等各小组的组中值乘以各小组人数的总和。【解】(1);b=5023520=20;(2);(3)【方法指导】本题考查频数分布表和扇形统计图的基本计算、组中值的意义以及利用组中值求样本平均数等知识点。本题渗透了统计中用样本估计总体的基本思想,其中利用组中值进行计算是解决统计问题的常用方法。2(2013山东德州,19,8分)某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表调查数据进行了如下整理:(1)把上面的频数分布表和频数分布直方图补充完整;(2)从直方图
13、中你能得到什么信息?(写出两条即可)(3)为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按1.5倍价格收费,若要使60%的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?【思路分析】(1)根据频数之和等于样本数据总数,然后补全频数分布表与直方图;(2)只要符合题意即可;(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,用水量不超过5吨的有30户,计算出频率即可.【解】(2)答案不唯一:如从直方图可以看出:居民月均用水量大部分在2.0至6.5之间;居民月均用水量在3.5x5.0范围内的最多,有19户;居民月均用水量在8.0x9.5范围内的最少,只有2户;居
14、民月均用水量的中位数、众数都在3.5x5.0范围内等等。(合理即可)(3)要使60%的家庭收费不受影响,家庭月均用水量应该定为5吨,因为月均用水量不超过5吨的有30户,=60%.【方法指导】本题考查了数据的整理与分析 .本题结合现实生活中实际问题提取统计数据解决问题,主要考查频率与频数统计图表及其相关知识.3(2013广东湛江,22,8分)2013年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:频率分布表分数段频数频
15、率50560516008605705400270580550025805905m035905100524n(1)这次抽取了 名学生的竞赛成绩进行统计,其中:m ,n= ;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?【思路分析】(1),;(2)有了频数,补全图形很容易;(3)用样本的相关数据估计总体。【解】(1)200,75,0.12(2)补全后的频数分布直方图如下图:(3)1500420(人)【方法指导】(1)统计图的分析有:条形统计图、折线统计图、扇形统计图三种,能读懂各种统计图是解答此类题的
16、关键。(2)各种统计图表示的特点:条形统计图能够显示每组数据的具体值,也易于比较数据之间的差别;折线统计图不仅能确切表示出各部分的具体值,还能显示出各个数据的变化趋势;扇形统计图能够清楚地表示出各部分在总体中所占的百分比.(3)从统计图中获取信息时,应认真观察图形,并联系所给图形及数据之间关系,整理获取的数据,将其带入相关公式进行计算,分析所得结果,并做出合理、科学、有效的决策.4(2013四川成都,18,8分)“中国梦”关乎每个人的幸福生活为进一步感知我们身边的幸福,展现成都人追梦的风采我市某校开展了以“梦想中国,逐梦成都”为主题的摄影大赛,要求参赛学生每人交一件作品现将参赛的50件作品的成
17、绩(单位:分)进行统计如下:等级成绩(用s表示)频数频率A90s100x0.08B80s9035yCs80110.22合计501请根据上表提供的信息,解答下列问题:(1)表中x的值为_,y的值为_;(2)将本次参赛作品获得A等级的学生依次用A1,A2,A3,表示,现该校决定从本次参赛作品获得A等级的学生中,随机抽取两名学生谈谈他们的参赛体会,请用树状图或列表法求恰好抽到学生A1和A2的概率【思路分析】(1)所有频数的和等于50,x50(3511)4;所有频率的和等于1,y1(0.080.22)0.7;(2)一次抽取两名学生与“不放回地摸两次球的模型”是一样的【解】(1)4,0.7;(2)画树状
18、如下:A1A2A3A4A2A1A3A4A3A1A2A4A4A1A2A3或列表如下:A1A2A3A4A1A1A2A1A3A1A4A2A2A1A2A3A2A4A3A3A1A3A2A3A4A4A4A1A4A2A4A3由树状图或列表可知,在A等级的学生中抽两名共有12种等可能情况,其中抽到学生A1和A2的情况共有2种,所以所求概率P【方法指导】首先判断该事件是否等可能性,然后寻找所有等可能的结果,再看我们所关注的事件试验一次所发生的结果数,最后利用古典概率计算公式进行计算5(2013潍坊,21,10分)随着我国汽车产业的发展,城市道路拥堵问题日益严峻某部门对15个城市的交通状况进行了调查,得到的数据如
19、下表所示:(1)根据上班花费时间,将下面的频数分布直方图补充完整;(2)求15个城市的平均上班堵车时间(计算结果保留一位小数);(3)规定: ,比如:北京的堵车率368%;沈阳的堵车率545%某人欲从北京、沈阳、上海、温州四个城市中任意选取两个作为出发目的地,求选取的两个城市的堵车率都超过30%的概率答案:(1)补全的统计图如图所示(2)平均上班堵车时间(141241127262530)1583(分钟)(3)上海的堵车率11(4711)306,温州的堵车率5(255)25,堵车率超过30%的城市有北京、沈阳和上海从四个城市中选两个的方法共有6种(北京,沈阳),(北京,上海),(北京,温州),(
20、沈阳,上海),(沈阳,温州),(上海,温州) 其中两个城市堵车率均超过30%的情况有3种:(北京,沈阳),(北京,上海),(沈阳,上海)所以选取的两个城市堵车率都超过30%的概率考点:频数分布表、频数分布直方图、平均数、概率点评:从统计图表得到正确信息是解题关键,第三问先确定堵车率超过30的城市,再根据概率的意义,用列表或树形图表示出所有可能出现的结果,找出关注的结果,从而求出它的概率6.(2013四川内江,18,8分)随着车辆的增加,交通违规的现象越来越严重,交警对某雷达测速区检测到的一组汽车的时速数据进行整理,得到其频数及频率如表(未完成):数据段频数频率3040100.054050360
21、.185060780.396070560.287080200.10总计2001(1)请你把表中的数据填写完整;(2)补全频数分布直方图;(3)如果汽车时速不低于60千米即为违章,则违章车辆共有多少辆?7.(2013贵州省黔东南州,20,10分)为了解黔东南州某县2013届中考学生的体育考试得分情况,从该县参加体育考试的4000名学生中随机抽取了100名学生的体育考试成绩作样本分析,得出如下不完整的频数统计表和频数分布直方图 成绩分组组中值频数25x30 27.54 30x35 32.5m 35x40 37.524 40x45 a36 45x50 47.5n 50x55 52.54 (1)求a、
22、m、n的值,并补全频数分布直方图;(2)若体育得分在40分以上(包括40分)为优秀,请问该县中考体育成绩优秀学生人数约为多少?考点:频数(率)分布直方图;用样本估计总体;频数(率)分布表分析:(1)求出组距,然后利用37.5加上组距就是a的值;根据频数分布直方图即可求得m的值,然后利用总人数100减去其它各组的人数就是n的值;(2)利用总人数4000乘以优秀的人数所占的比例即可求得优秀的人数解答:解:(1)组距是:37.532.5=5,则a=37.5+5=42.5;根据频数分布直方图可得:m=12,则n=10041224364=20;(2)优秀的人数所占的比例是:=0.6,则该县中考体育成绩优
23、秀学生人数约为:40000.6=2400(人)点评:本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题8(2013河南省,17,8分)从2013年1月7日起,中国中东部大部分地区持续出现雾霾天气。某市记者为了了解“雾霾天气的主要成因”,随机调查了该市部分市民,并对调查结果进行整理,绘制了如下尚不完整的统计图表组别观点频数(人数)A大气气压低,空气不流动80B地面灰尘大,空气湿度低C汽车尾气排放D工厂造成的污染120E其他60请根据图表中提供的信息解答下列问题:(1)填空: , ,扇形统计图中组所占的百分比
24、为 %。(2)若该市人口约有100万人,请你估计其中持D组“观点”的市民人数(3)若在这次接受调查的市民中,随机抽查一人,则此人持C组“观点”的概率是多少?【解析】(1)由A组的频数和A组在扇形图中所占的百分比可以得出调查的总人数: , 组所占百分比是 (2)由题可知:D组“观点”的人数在调查人数中所占的百分比为 (万人) (3)持C组“观点”的概率为【答案】(1)40;100;15% (2)30万人 (3)9(2013黑龙江省哈尔滨市,23)春雷中学要了解全校学生对不同类别电视节目的喜爱情况,围绕“在体育、新闻、动画、娱乐四类电视节目中,你最喜欢哪一类?(必选且只选一类)”的问题,在全校范围
25、内随机抽取部分学生进行问卷调查将调查结果整理后绘制成如图所示的不完整的条形统计图其中最喜欢新闻类电视节目的人数占被抽取人数的l0请你根据以上信息回答下列问题: (1)在这次调查中,最喜欢新闻类电视节目的学生有多少名?并补全条形统计图: (2)如果全校共有l 200名学生,请你估计全校学生中最喜欢体育类电视节目的学生有多少名?考点:条形统计图;用样本估计总体;分析:(1)根据条形统计图除新闻的三组人数,最喜欢新闻类电视节目的人数占被抽取人数的l0则除新闻的三组人数占90,即可得出被抽取的总天数;用抽取人数减去除新闻的三组人数即可,再根据各组人数补图(2)最喜欢体育类电视节目的学生所占比例得出全校共有l 200名学生即可解答: (1)解:(11+18+16)(110)=50(名)。50111816=5(名)在这次调查中最喜欢新闻类电视节目的学生有5名补全条形图如图所示(2)解:l200=264(名)估计全校学生中最喜欢体育类电视节目的学生有264名13