收藏 分享(赏)

2014年高考数学一轮复习 热点难点精讲精析 选修系列(第1部分:坐标系与参数方程).doc

上传人:Judejasmine 文档编号:21858070 上传时间:2023-12-13 格式:DOC 页数:7 大小:393.50KB
下载 相关 举报
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第1部分:坐标系与参数方程).doc_第1页
第1页 / 共7页
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第1部分:坐标系与参数方程).doc_第2页
第2页 / 共7页
2014年高考数学一轮复习 热点难点精讲精析 选修系列(第1部分:坐标系与参数方程).doc_第3页
第3页 / 共7页
亲,该文档总共7页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、 2014年高考一轮复习热点难点精讲精析:选修系列(第1部分:坐标系与参数方程)一、坐标系(一)平面直角坐标系中的伸缩变换例在同一平面直角坐标系中,已知伸缩变换(1)求点经过变换所得的点的坐标;(2)点B经过变换得到点,求点的坐标;(3)求直线经过变换后所得到直线的方程;(4)求双曲线经过变换后所得到曲线的焦点坐标。思路解析:解答本题首先要根据平面直角坐标系中的伸缩变换公式的意义与作用,明确原来的点与变换后的点的坐标,利用方程的思想求解。解答:(二)极坐标与直角坐标的互化例2在极坐标系中,如果为等边三角形ABC的两个顶点,求顶点C的极坐标。思路解析:解答本题可以先利用极坐标化为直角坐标,再根据

2、等边三角形的定义建立方程组求解。解答:利用坐标转化(三)求曲线的极坐标方程例已知P,Q分别在AOB的两边OA,OB上,AOB=,POQ的面积为8,求PQ中点M的极坐标方程。思路解析:(1)建立以O为极点,OP所在直线为极轴的极坐标系;(2)设点M的极坐标,依POQ的面积建立关系式。解答:建立如图所示极坐标系,设动点M坐标为,P,Q两点坐标分别为则有:(四)极坐标的应用例如图,点A在直线x=4上移动,OPA为等腰直角三角形,OPA的顶角为OPA(O,P,A依次按顺时针方向排列),求点P的轨迹方程,并判断轨迹形状。思路解析:建立极坐标系设出点的坐标,根据题意用代入法求解。解答:取O为极点,x正半轴

3、为极轴,建立极坐标系,则直线x=4的极坐标方程为点A在直线上, OPA为等腰直角三角形,且OPA=,而|OP|=,|OA|=,以及,=,且 把代入得点P的轨迹的极坐标方程为=4得点P的轨迹的普通方程为x+y=4,是过点(4,0)且倾斜角为的直线。二、参数方程(一)把参数方程化为普通方程例已知曲线C:(t为参数), C:(为参数)。(1)化C,C的方程为普通方程,并说明它们分别表示什么曲线;(2)若C上的点P对应的参数为,Q为C上的动点,求中点到直线 (t为参数)距离的最小值。解答:()为圆心是,半径是1的圆。为中心是坐标原点,焦点在轴上,长半轴长是8,短半轴长是3的椭圆。 ()当时,故为直线,

4、M到的距离从而当时,取得最小值(二)椭圆参数方程的应用在平面直角坐标系中,点是椭圆上的一个动点,求的最大值解答: 因椭圆的参数方程为 故可设动点的坐标为,其中. 因此 所以,当时,取最大值2(三)直线参数方程的应用例过点作倾斜角为的直线与曲线交于点,求的值及相应的的值。解析:设直线为,代入曲线并整理得则所以当时,即,的最小值为,此时。(四)圆的参数方程的应用例已知曲线C的参数方程是为参数),且曲线C与直线=0相交于两点A、B(1)求曲线C的普通方程;(2)求弦AB的垂直平分线的方程(3)求弦AB的长解答:(1)由所以,曲线C的普通方程为(x2)2+y2=24(2)因为,所以AB的垂直平分线斜率为5分又垂直平分线过圆心(2,0),所以其方程为y=8分(3)圆心到直线AB的距离,圆的半径为所以12分7

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 往来文书

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报