1、4.5 最基本的图形点和线1.点与线段通过前面的学习,大家一定会感叹,生活中有那么多奇妙的图形!其实不管是什么样的图形,它都是由一些基本的图形构成的.下面先看两个最基本的图形.点(point)通常表示一个物体的位置.例如,在中国地图上,点用来表示城市的位置;而在电视屏幕上,点用来组成一幅幅画面.在日常生活中,一根拉紧的绳子、一根竹竿,人行横道线都给我们以线段(line segment)的形象.我们可以用图4.5.1的方式来表示点和线段.图4.5.1想一想如图4.5.2,从A地到B地有三条路径,你会选择哪一条?在实际的情况中,我们都希望走的路越短越好,当然选择笔直的路线.这条路线就是线段AB.这
2、也就是我们平时所说的,两点之间,直线段最短.图4.5.2此时线段AB的长度,就是AB两点间的距离.做一做:图4.5.3中,A、B之间有一条弯曲的马路,请量出图上A、B之间的直接距离.把线段向一方无限延伸所形成的图形(如图4.5.4)叫做射线(ray).图4.5.4手电筒的光线和激光灯的光束(图4.5.5),也就是一种射线的形象.图4.5.5把线段向两方无限延伸所形成的图形(如图4.5.6)就是直线line, (Straight line). 图4.5.6试一试:在纸上画出一点A和一点B,过A点你能能画出几条直线?经过A、B两点画直线,你又可以画几条?通过试一试你是否得到了这样的结论:经过两点有
3、一条直线,并且只有一条直线.练习1.要在墙上钉牢一根木条,至少要钉几颗钉子?为什么?2.请举出生活中运用“两点之间,线段最短”的几个例子.2.线段的长短比较 记得你和同学是怎么比个子高矮的吗?可能大家通常会有两种办法:要么让两人都说出自己的高度,对比一下;要么让两人背对背地站在同一块平地上,脚底平齐,观看两人的头顶,直接比出高矮,而且这第二种方法更为实用.线段也可以通过类似的两种方法来比较它们的长短.对于图4.5.8中的线段AB、CD,我们用刻度尺量一下,那么就可以知道它们谁长谁短了. 图4.5.8如果AB比CD短,我们可以很简单的记为ABAB).比较两条线段的长短,第二种方法与比个子高矮一样
4、,就是把其中的一条线段移到另一条线段上去加以比较.如图4.5.9,将线段AB放到线段CD上,点A和C放在一起,线段AB与线段CD叠合.这样从图中我们就可以直接看出线段AB比CD短,也就是ABCD.观察下图中的几条线段,估计一下,哪一条最长,哪一条最短?图4.5.9将一条线段分成两条相等的线段的点,叫做这条线段的中点(middle point).在图4.5.10中,点C是线段AB的中点.AB=4cm,那么AC=CB=2(cm),AC+CB=AB=4(cm).图4.5.10又如图4.5.11,AB=6cm,点C是线段AB的中点,点D是线段BC的中点,那么AD有多长呢?图4.5.11做一做在一张纸上
5、任意画一条线段,折叠纸片,使这条线段的两个端点重合在一起,那么折痕与线段的交点就是线段的中点.AC = CB= AB = 3(cm),CD = CB = 1.5(cm)AD = AC+CD = 4.5(cm).练习1.做两个三角形纸片,用折纸的方法比较线段AB与线段AC的长短.2.观察下列一组图形,比较线段的长短.再用直尺量一下,看看你的观察结果是否正确.读一读:光线光在两点之间传播时,光是走直线的,也就是两点间的最短距离.十七世纪法国数学家费尔玛提出了一个“光行最短原理”.即“光线由A点到B点的路线,是所有路线中距离最短的路线”.光线可以在各种错综复杂的环境中找到“最短的路线”.所以光线被某
6、一物体所阻挡时,这一部分光线就射不过去了,相应地在障碍物后面便形成了一个“影子”.在太阳光的照射下,房屋、树木或你自身都会在地上投出影子.习题4.51. 如图,有A、B、C,O四个点,分别画出以O点为端点,经过A、B、C各点的射线,并分别用字母表示.想一想,图中可以画出几条射线?线段?直线?指出其中最长的一条线段.2.画出长度为5cm 的线段AB,并用刻度尺找出它的中点.3.在一条直线上顺次取A、B、C三点,使AB=5cm,BC=2 cm,并且取线段AC的中点O,求线段OB的长.4.直线l上有一个点,在直线l上以这个点为端点的不同射线共有多少条?5.读下列语句,并画出图形:(1) 点A在直线l上,点B在直线l外:(2) 在纸上任意画一点P,过点P画直线PQ;(3) 在纸上任意画A、B两点,过A、B两点画直线;(4) 在纸上任意画A、B、C三点,过A、C两点画直线l.又问此时点B是否一定在这一条直线上?欢迎您