收藏 分享(赏)

12.4 二项式定理52改(改).docx

上传人:eco 文档编号:21230478 上传时间:2023-09-12 格式:DOCX 页数:12 大小:295.92KB
下载 相关 举报
12.4 二项式定理52改(改).docx_第1页
第1页 / 共12页
12.4 二项式定理52改(改).docx_第2页
第2页 / 共12页
12.4 二项式定理52改(改).docx_第3页
第3页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、第四节 二项式定理考纲解读1. 能用计数原理证明二项式定理.2. 会用二项式定理解决与二项式展开式有关的简单问题.命题趋势探究1. 高考对本节内容的考查常以选择题或填空题的形式出现,并且高于中等偏易试题.2. 主要考查内容是:利用通项求解展开式中的某指定项;利用二项式特别是的展开式求解系数或求某些类似于二项展开式的式子的值;二项式系数的有关问题.知识点精讲一、二项式定理 .展开式具有以下特点:(1)项数:共项.(2)二项式系数:依次为组合数.(3)每一项的次数是一样的,都为次,展开式依的降幂、的升幂排列展开.特别地,.二、二项式展开式的通项(第项) 二项式展开的通项为.其中的二项式系数.令变量

2、(常用)取1,可得的系数.注 通项公式主要用于求二项式展开式的指数、满足条件的项数或系数、展开式的某一项或系数.在应用通项公式时要注意以下几点:分清是第项,而不是第项;在通项公式中,含这6个参数,只有是独立的,在未知的情况下利用通项公式解题,一般都需要先将通项公式转化为方程组求和.三、 二项式展开式中的系数 (1)二项式系数与项的系数 二项式系数仅指而言,不包括字母所表示的式子中的系数.例如:的展开式中,含有的项应该是,其中叫做该项的二项式系数,而的系数应该是(即含项的系数).(2) 二项式系数的性质 在二项式展开式中,与首末两端“等距离”的两项的二项式系数相等,即,. 二项展开式中间项的二项

3、式系数最大. 如果二项式的幂指数是偶数,中间项是第项,其二项式系数最大;如果二项式的幂指数是奇数,中间项有两项,即为第项和第项,它们的二项式系数和相等并且最大.(3)二项式系数和与系数和二项式系数和 .奇数项二项式系数和等于偶数项二项式系数和, .系数和求所有项系数和,令;求变号系数和,令;求常数项,令。题型归纳及思路提示题型172 二项式定理展开式的应用思路提示 对二项展开式的认识不仅要关注展开式中对各项的特点,更重要的是要理解等式两边的关系,右边是左边个因式积的结果,而左边是右边各项和的结果,这就为此类问题的解决提供了思考的方向和解决的思路。例12.30 用计数原理证明: .解析: ,其展

4、开式的通项为,是由个中的个中每一个取,个中每一个取相乘取得的,这样的取法(只需从个中取,自然剩余个中取)共有种,即 .故 变式1 在的展开式中,的系数为( )A. B. C. D. 变式2 在的展开式中,的系数为_(用数字作答).变式3 的展开式中整理后的常数项为_(用数字作答).题型173 二项展开式通项的应用思路提示二项展开式的通项从微观角度反映了二项展开式的全貌,是展开式的缩影,它可以用于求二项展开式的任意指定项及其系数等。例12.31 (1)的展开式的常数项是( )A. B. C. D. (2)展开式中的系数为( ) A. B. C. D. 变式1 展开式中的系数为_。变式2 展开式中

5、的常数项为_。变式3 已知的展开式中没有常数项,且,=_.例12.32 (1)求证: .(2)求证:.变式1 ,.求证:.变式2 求证: .变式3 对于,求证:. 例12.33 (1)展开式中的系数为,=_.(2) (2017新课标理数)(+)(2-)5的展开式中33的系数为A-80B-40C40D80变式1 的展开式中含的项的系数为_(用数字作答)。变式 2 设二项式()的展开式中的系数为A,常数项为B,若B=4A,则的值为_。变式 3 展开式中与的系数和为_(用数字作答)。例12.34 展开式中系数为有理数的项共有_项。变式1 的第三项和第二项系数之比为11:2,求展开式中有理项有多少个?

6、变式2 (为有理数),则=( ) A. 45 B. 55 C. 70 D. 80变式3 展开式中存在常数项,正整数的最小值为_.题型174 二项展开式的系数和问题思路提示有关系数和的问题不仅要注意二项式系数和的结果,重要的是研究二项式系数所用的方法即赋值法,这里就需要读者根据题目结合已知条件进行赋值。例12.35 已知=.求(1);(2);(3);(4).变式1 已知二项展开式,则=_.变式2 的展开式中各项系数的和为2,则该展开式中常数项为( )A. -40 B. -20 C. 20 D. 40例12.36 若=(),则的值为( )A. 2 B. 0 C. -1 D. -2变式1 已知=.若

7、,那么自然数的值为( )A. 3 B. 4 C. 5 D. 6变式2 若,则=_.题型175 二项展开式中系数或项的最大、最小问题思路提示 二项式系数最大(小)问题按前述“知识点精讲”原理求解.系数或项的最大、最小问题需按该项大于(或小于)等于相邻两项,列不等式组求解。例12.37 展开式中:(1)只有第7项的二项式系数最大,则=_;(2)第7项二项式系数取最大值,= _.变式1 求展开式的系数最大项和最小项。变式2 求展开式中二项式系数最大项数和系数最大项数。最有效训练题52(限时30分钟)1.的二项展开式中,的系数为( )A. 10 B.-10 C.40 D. -402. (其中且)展开式

8、中,与的系数相等,则=( )A. 6 B. 7 C.8 D. 93的展开式中,的系数为10,则实数等于( )A. B. C. 1 D. 24. (2017新课标理数)展开式中的系数为A15B20C30D355.若展开式中的所有二项式系数和为512,则该展开式中的常数项为( )A. -84 B. 84 C. -36 D. 366. 设=,则的值为( )A. 2 B. -1 C. -2 D. 1 7. 若的展开式中第3项与第7项的二项式系数相等,则该展开式中的的系数为_8. (2017山东理)已知的展开式中含有项的系数是,则 .9. 已知,若数列()是一个单调递增数列,则的最大值为_.10. (2017浙江)已知多项式,则=_,=_11. 12. 。(1) 若,求的值; (2) 若,求中含的项的系数;(3) 证明:

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 往来文书

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报