1、第六章 数 列本章知识结构图数列常见递推类型及方法逐差累加法逐商累积法构造等比数列an构造等差数列an1anf (n)f (n)an1panqpan1ananan1化为=1转为an + 1panqn公式法:应用等差、等比数列的前n项和公式分组求和法倒序相加法裂项求和法错位相加法常见求和方法概念表示等差数列与等比数列的类比解析法:anf (n)通项公式图象法列表法递推公式等差数列通项公式求和公式性质判断ana1(n1)dana1qn1anamaparanamapar前n项和Sn前n项积(an0)Tn等比数列an0,q0Sn数列是特殊的函数第一节 等差数列与等比数列考纲解读1. 理解等差数列、等比
2、数列的概念.2. 掌握等差数列、等比数列的通项公式与前n项和公式.3. 能在具体的问题情境中,识别数列的等差关系或等比关系,并能用有关知识解决相应的问题.4. 了解等差数列与一次函数、等比数列的性质以及函数的关系一直是高考中的热点.命题趋势探究1. 从内容上看,等差、等比数列的性质以及与函数的关系一直是高考中的热点.2. 在能力方面,要求学生具备一定的创新能力和抽象概括能力.3. 从命题形式上看,以选择、填空题为主,难度不大.知识点精讲一、基本概念1.数列(1)定义.按照一定顺序排列的一列数就叫做数列.(2)数列与函数的关系.从函数的角度来看,数列是特殊的函数.在中,当自变量时,所对应的函数值
3、就构成一数列,通常记为,所以数列有些问题可用函数方法来解决.2.等差数列(1)定义.一般地,如果一个数列从第2项起,每一项与它前一项的差等于同一常数,则该数列叫做等差数列,这个常数叫做公差,常用字母表示,即.(2)等差数列的通项公式.若等差数列的首项是,公差是,则其通项公式为,是关于的一次型函数.或,公差(直线的斜率)().(3)等差中项.若成等差数列,那么叫做与的等差中项,即或,.在一个等差数列中,从第2项起(有穷等差数列的末项除外),每一项都是它的前一项与后一项的等差中项;事实上,等差数列中每一项都是与其等距离的前后两项的等差中项.(4)等差数列的前项和(类似于),是关于的二次型函数(二次
4、项系数为且常数项为0).的图像在过原点的直线上或在过原点的抛物线上.3.等比数列(1)定义.一般地,如果一个数列从第2项起,每一项与它前一项的比等于同一个非零常数,则该数列叫做等比数列,这个常数叫做公比,常用字母表示,即.(2)等比数列的通项公式.等比数列的通项,是不含常数项的指数型函数.(3).(4)等比中项如果成等比数列,那么叫做与的等比中项,即或(两个同号实数的等比中项有两个).(5)等比数列的前项和注等比数列的前项和公式有两种形式,在求等比数列的前项和时,首先要判断公比是否为1,再由的情况选择相应的求和公式,当不能判断公比是否为1时,要分与两种情况讨论求解.已知(项数),则利用求解;已
5、知,则利用求解.,为关于的指数型函数,且系数与常数互为相反数.例如等比数列,前项和为,则.解:等比数列前项和,则.二、基本性质1.等差数列的性质(1)等差中项的推广.当时,则有,特别地,当时,则有.(2)等差数列线性组合.设是等差数列,则也是等差数列.设是等差数列,则也是等差数列.(3)有限数列.对于项数为的等差数列,有:().().对于项数为的等差数列,有;().().(4)等差数列的单调性及前项和的最值.公差为递增等差数列,有最小值;公差为递减等差数列,有最大值;公差为常数列.特别地若,则有最大值(所有正项或非负项之和);若,则有最小值(所有负项或非正项之和).(5)其他衍生等差数列.若已
6、知等差数列,公差为,前项和为,则:等间距抽取为等差数列,公差为.等长度截取为等差数列,公差为.算术平均值为等差数列,公差为.2.等差数列的几个重要结论(1)等差数列中,若,则.(2)等差数列中,若,则.(3)等差数列中,若,则.(4)若与为等差数列,且前项和为与,则.3.等比数列的性质(1)等比中项的推广.若时,则,特别地,当时,.(2)设为等比数列,则(为非零常数),仍为等比数列.设与为等比数列,则也为等比数列.(3)等比数列的单调性(等比数列的单调性由首项与公比决定).当或时,为递增数列;当或时,为递减数列.(4)其他衍生等比数列.若已知等比数列,公比为,前项和为,则:等间距抽取为等比数列
7、,公比为.等长度截取为等比数列,公比为(当时,不为偶数).4.等差数列与等比数列的转化(1)若为正项等比数列,则为等差数列.(2)若为等差数列,则为等比数列.(3)若既是等差数列又是等比数列是非零常数列.题型归纳及思路提示题型 等差、等比数列的通项及基本量的求解思路提示利用等差(比)数列的通项公式或前项和公式,列出关于基本量的方程或不等式从而求出所求的量.一、求等差数列的公差及公差的取值范围例6.1 记等差数列的前项和为,若,则该数列的公差( ).A.7 B.6 C.3 D.2评注 求解基本量用的是方程思想.变式1 (2017全国1理4)记为等差数列的前项和若,则的公差为( ).A1 B2 C
8、4 D8变式2 已知等差数列首项为31,从第16项起小于1,则此数列公差的取值范围是( ).A. B. C. D.二、求等比数列的公比例6.2(1)(2018北京卷文) “十二平均律” 是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为( )A. B. C. D. 变式1 等比数列的前项和为,且成等差数列,若,则( ).A.7 B.8 C.15 D.16变式2 等比数列的前项和为,若成等差
9、数列,则的公比为.三、求数列的通项例6.3 (1)2016全国甲文17)等差数列中,.求的通项公式; (2)(2017全国1文17)记为等比数列的前项和.已知,.求的通项公式;变式1 为等差数列的前项和,则.变式2 已知两个等比数列,满足,求数列的通项公式.例6.4 在等差数列中,且为和的等比中项,求数列的前项和为.变式1 已知数列的前项和,则其通项;若它的第项满足,则.变式2 已知数列的前项和为非零实数),那么( ).A.一定是等差数列 B.一定是等比数列C.或者是等差数列,或者是等比数列D.既不可能是等差数列,也不可能是等比数列题型81 等差、等比数列的求和思路提示求解等差或等比数列的前项
10、和,要准确地记住求和公式,并合理选取公式,尤其是要注意其项数的值;对于奇偶项通项不统一和含绝对值的数列的求和问题要注意分类讨论.主要是从为奇数、偶数,项的正、负进行分类.一、公式法(准确记忆公式,合理选取公式)例6.5 在等比数列中,若,则该数列的前10项和为( ).变式1 是由正数组成的等比数列,为前项和,已知,则.变式2 设,则.二、关于等比数列求和公式中的讨论例6.6 设等比数列的前项和为,若成等差数列,求数列的公比.变式1 设数列是等比数列,其前项和为,且,则其公比.变式2 求和.三、关于奇偶项求和问题的讨论例6.7 已知数列的通项公式为,求其前项和为.评注:本题中,将为奇数的情形转化
11、为为偶数的情形,可以避免 不必要的计算,此技巧值得同学们借鉴和应用。变式1 已知数列中,通项,求其前项和.四、对于含绝对值的数列求和例6.8 已知数列的前项和,数列的每一项都有 ,求数列的前项和评注:由正项开始的递减等差数列的绝对值求和的计算题解题步骤如下:(1)首先找出零值或者符号由正变负的项(2)在对进行讨论,当时,当时,变式1 在等差数列中,其前项和为(1)求使的最小正整数(2)求的表达式题型82 等差、等比数列的性质应用思路提示利用等差、等比数列的性质,主要是利用:等差中项和等比中项 等差数列中成等差数列;等比数列中(当时不为偶数)成等比数列.等差数列等差数列的单调性利用以上性质,对巧
12、解数列的选择题和填空题大有裨益。一、 利用性质:当时,在等差数列中,有;在等比数列中,有求解。例6.9 已知等差数列的前项和为,若,则等于( )A、18 B、36 C、54 D、72变式1 (2015重庆理2)在等差数列中,若,则( ).A. B. 0 C. 1 D. 6变式2 在等差数列中,则该数列的前13项和等于( )A、13 B、26 C、52 D、156变式3在等差数列中,则该数列的前9项和等于( )A、66 B、99 C、144 D、297二、利用等差数列中成等差数列;等比数列中(当时不为偶数成等比数列求解。例6.10 等差数列的前项和为,若,则等于( )A、12 B、18 C、24
13、 D、42评注:本题除了使用本法求解之外,还有几种求解方法,如(1)基本量法;(2)使用为等差数列求解;(3)使用求解变式1 等差数列的前项和为,若,则( )A、 B、 C、 D、变式2 等比数列的前项和为,若,则( )A、2 B、 C、 D、3三、 用有限等差数列的性质求解例6.11 已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为( )A、5 B、4 C、3 D、2变式1 已知等差数列的前项和为377,项数为奇数,且奇数项的和与偶数项的和之比为7:6,求中项变式2 已知数列与都是等差数列,且前项和为与,且,则使得为整数的正整数的个数是( )A、2 B、3 C、4
14、D、5四、 利用等差、等比数列的单调性求解例6.12 已知数列是递增数列,且对,都有,则实数的取值范围是( )A、 B、 C、 D、(2) 在处理数列的单调性问题时应利用数列的单调性定义,即“若数列是递增数列,恒成立”。(3) 数列的单调性与,的单调性不完全一致。一般情况下我们不应把数列的单调性转化为相应连续函数的单调性来处理。但若数列对应的连续函数是单调函数,则可以借助其单调性来求解数列的单调性问题。即“离散函数有单调性连续函数由单调性;连续函数有单调性离散函数有单调性”。变式1 已知函数,若数列满足 (),且是递增数列,则实数的取值范围是( )A、 B、 C、 D、例6.13 在等差数列中
15、,已知,前项和为,且,求当为何值时,取最大值,并求此最大值。评注:求等差数列前项和的最值的常用方法如下:(1)利用等差数列的单调性,求出其正负转折项。(2)利用性质求出其正负转折项,便可以求得和的最值。(3)利用等差数列前项和为二次函数,根据二次函数的性质求最值。变式1 数列是等差数列,若,且其前项和有最小值,那么当取最小值时,等于( )A、11 B、17 C、19 D、20变式2 设等比数列的首项为,公比为,则“”是“对于任意都有”的( )A、充分不必要条件 B、必要不充分条件 C、充分必要条件 D、既不充分也不必要条件变式3 已知(),则在数列的前50项中最小项和最大项分别是( )A、 B
16、、 C、 D、题型83 判断和证明数列是等差、等比数列思路提示判断和证明数列是等差、等比数列常见的3中方法如下:(1)定义法:对于的任意正整数,都有(或)为同一常数(用于证明)。(2)通项公式法:若,则数列为等差数列(用于判断);若,则数列为等比数列(用于判断);(3)中项公式法:若(),则数列为等差数列(用于证明);若(),则数列为等比数列(用于证明);一、 定义法例6.14 (1)设为等差数列,证明:数列()是等比数列。(2)设为正项等比数列,证明:数列()是等差数列。评注 将等差数列转化为等比数列,利用指数运算来转化;将正项等比数列转化为等差数列,利用对数运算来转化。变式1 在数列中,且
17、(1)设,求证:数列是等比数列(2)设,求证:数列是等差数列变式2 数列的前项和为,已知,(),证明:数列是等比数列。变式3 已知定义在R上的函数和数列满足下列条件:,(),(),(),其中为常数,为非零常数。令(),证明:数列为等比数列。二、 中项公式法例6.15 已知数列满足,(). (1)证明:数列为等比数列。 (2)求数列的通项公式。 (3)若数列满足(),证明:数列是评注 第(1)问给出数列的一个递推公式,要证明形如的数列为等差或等比数列,一般将递推公式代入,利用定义法证明。利用等差中项法解决第(3)问并不能明显看出来,这需要在对第(3)问的整理和变形中去发现解题方法。在解数学题时,
18、既要有严谨的推理,也要勇于探索尝试。变式1 设是公比不为1的等比数列,其前项和为,且,成等差数列(1)求数列的公比;(2)证明:对任意成等差数列变式2设数列中的每一项都不为0 . 证明:为等差数列的充分必要条件是:对任何,都有+题型84 等差数列与等比数列的综合应用思路提示(1) 等差数列与等比数列的相互转化:等差数列通过指数运算转化为正项等比数列,正项等比数列通过对数运算转化为等差数列。(2) 等差数列和等比数列的交汇,若一个数列既是等差数列又是等比数列,则该数列为非零常数数列。一、等差数列与等比数列的相互转化例6.16 已知数列,是各项均为正数的等比数列,设()(1)数列是否为等比数列?证
19、明你的结论(2)设数列,的前项和分别为,,若,求数列的前项和变式1 设数列是正项等比数列,且,那么的值是( )A、30 B、20 C、10 D、5变式2 已知等比数列满足各项均为正数,且(),则当时,等于( )A、 B、 C、 D、变式3 设是公比大于1的等比数列,前项和为,已知,且,构成等差数列。(1)求数列的通项;(2)令(),求数列的前项和.二、 等差数列和等比数列的交汇问题例6.17 已知首项为的等比数列不是递减数列,其前项和为(),且,成等差数列,求数列的通项公式。变式1 设数列是首项为,公差为的等差数列,其前项和为 记,(),成等比数列,证明: ()例6.18 在等差数列中,公差,
20、是与的等比中项,已知数列,成等比数列,求数列的通项例6,19 设是各项均不为零的项等差数列,且公差.若将此数列删去某一项后得到的数列(按原来的顺序排列)是等比数列。(1)当时,求的数值; 求的所有可能值.(2)求证:对于给定的正整数,存在一个各项及公差均不为0的等差数列,其中任意三项(按原来的顺序)都不能组成等比数列。评注 本题考察了一个基本事实:一个数列既是等差数列又是等比数列,则该数列是非零常数数列。变式1、设等差数列包含1和 ,求证:中的任意三项不构成等比数列。最有效训练题23(限时45分钟)1、 等差数列的公差不为零,首项,是和的等比中项, 则数列的前10项之和是( ) A、90 B、
21、100 C、145 D、1902、 设数列为等差数列,其前项和为,已知, ,若对任意的,都有,则的值为( ) A、22 B、21 C、20 D、193、如果等差数列中,那么( ) A、14 B、21 C、28 D、354、 已知各项均为正数的等比数列中,则 ( ) A、 B、7 C、6 D、5、 已知是首项为1的等比数列,是的前项和,且, 则数列的前5项的和为( ) A、或5 B、或5 C、 D、6、 设是任意等比数列,其前项的和、前2项的和与前3项 之和分别为,则下列等式中恒成立的是( )A、 B、C、 D、7、 已知在等差数列中,对任意的,都有,且是 方程的两实数根,且前15项的和,则数列 的公差是_8、 已知为等差数列,为等比数列,其公比,且 ,若,则_(用填空)。9、 (1)在等比数列中,公比,若,则 _。 (2)设数列,都是正项等比数列,分别为数列, 的前项之和,且,则=_.10、(2016浙江文17)设数列的前项和为.已知,.(1)求通项公式;(2)求数列的前项和.11、(2017全国3文17)设数列满足.(1)求的通项公式;(2)求数列的前项和.12、(2017山东文19)已知是各项均为正数的等比数列,且,. (1)求数列的通项公式;(2)为各项非零的等差数列,其前项和,已知,求数列的前项和.