1、第八节函数的图像考纲解读1.掌握描绘函数图像的两种基本方法直接描点法(列表描点)和图像变换法.2.会利用函数图像进一步研究函数的性质,解决方程和不等式中的问题.3.会用数形结合、转化与化归的思想,分析解决数学问题.命题趋势探究基本初等函数的图像是高考中的重要考点之一,是用来研究其他图像问题的基础,是研究函数性质的重要工具.解决此类问题的重要思路是要利用函数性质与图像之间的对应关系去比照,如定义域、单调性、奇偶性、特殊点等.高考中总是以几类基本初等函数的图像为基础来考查函数图像,往往结合函数行之一并考察,题型主要是选择题与填空题,考查的形式主要有知式选图、知图选式、图像变换(平移变换、对称变换)
2、以及灵活地应用图像解题,属于每年必考内容之一知识点精讲一、掌握基本初等函数的图像(1)一次函数;(2)二次函数;(3)反比例函数;(4)指数函数;(5)对数函数;(6)三角函数.二、函数图像作法1.直接画确定定义域;化简解析式;考察性质:奇偶性(或其他对称性)、单调性、周期性、凹凸性;特殊点、极值点、与横/纵坐标交点;特殊线(对称轴、渐近线等). 2.图像的变换(1)平移变换函数的图像是把函数的图像沿轴向左平移个单位得到的;函数的图像是把函数的图像沿轴向右平移个单位得到的;函数的图像是把函数的图像沿轴向上平移个单位得到的;函数的图像是把函数的图像沿轴向下平移个单位得到的;(2)对称变换i:函数
3、与函数的图像关于轴对称; ii:函数与函数的图像关于轴对称;iii: 函数与函数的图像关于坐标原点对称;i:若函数的图像关于直线对称,则对定义域内的任意都有或(实质上是图像上关于直线对称的两点连线的中点横坐标为,即为常数); ii: 若函数的图像关于点对称,则对定义域内的任意都有的图像是将函数的图像保留轴上方的部分不变,将轴下方的部分关于轴对称翻折上来得到的(如图2-21(a)和图2-21(b)所示的图像是将函数的图像只保留轴右边的部分不变,并将右边的图像关于轴对称得到函数左边的图像即函数是一个偶函数(如图2-21(c)所示).注:的图像先保留原来在轴上方的图像,做出轴下方的图像关于轴对称图形
4、,然后擦去轴下方的图像得到;而的图像是先保留在轴右方的图像,擦去轴左方的图像,然后做出轴右方的图像关于轴的对称图形得到.这两变换又叫翻折变换.函数与的图像关于对称.(3)伸缩变换的图像,可将的图像上的每一点的纵坐标伸长或缩短到原来的倍得到.的图像,可将的图像上的每一点的横坐标伸长或缩短到原来的倍得到.题型归纳及思路提示题型31 由式选图(识图)思路提示利用函数的性质(如定义域、值域、奇偶性、单调性、周期性、特殊点等)排除错误选项,从而筛选出正确答案例2.70 函数的图像大致是()变式1 函数的图像是()变式2 在同一坐标系中画出函数的图像,可能正确的是()变式3 函数与在同一直角坐标系中的图像
5、可能是()变式4已知函数,则的图像大致为( )题型32 函数图像的应用思路提示1利用函数图像判断方程解的个数.由题设条件作出所研究对象的图像,利用图像的直观性得到方程解的个数.例2.71函数的零点个数为( )变式1 已知函数,若关于的方程有两个不同的实根,则实数的取值范围是变式2 直线与曲线有4个交点,则的取值范围是变式3 函数的图像与函数的图像的交点个数为()变式4 设定义域为的函数,则关于的方程有7个不同实数解的充要条件是()变式5 设定义域为的函数,若关于的方程有7个不同实数解,则思路提示2 利用函数图像求解不等式的解集及参数的取值范围.先作出所研究对象的图像,求出它们的交点,根据题意结
6、合图像写出答案例2.72设函数,若,则的取值范围是()变式1 (2010新课标全国卷理24)设函数若不等式的解集非空,求的取值范围.变式2 已知函数若不等式,则实数的取值范围是 ( )A、 B、 C、 D、变式3 (2012福建理15)对于实数和,定义运算“*”:*= ,设*,且关于的方程恰有3个互不相等的实数根,则的取值范围是 .变式4已知函数若互不相等,且则的取值范围是 ( )A、 B、 C、 D、思路提示3 利用函数图像求函数的最值,先做出所涉及到的函数图像,根据题目对函数的要求,从图像上寻找取得最值的位置,计算出结果,这体现出了数形结合的思想。例2、73 用表示三个数中的最小值,设,则
7、的最大值为 ( )A、4 B、5 C、6 D、7变式1 设若则的最大值为 .变式2已知两条直线和与函数的图像从左到右相交于点,与的图像从左到右相交于点,记线段和在轴上的投影长度分别为.当变化时,的最小值为( ) A、 B、 C、 D、 最 有 效 训 练 题1、若点在图像上,则下列点中也在此图像上的是 ( )A、 B、 C、 D、2、为得到函数的图像,可将函数的图像上所有点的 ( )A、纵坐标缩短到原来的横坐标不变,再向右平移1个单位长度.B、纵坐标缩短到原来的横坐标不变,再向左平移1个单位长度.C、横坐标伸长到原来的倍,纵坐标不变,再向左平移1个单位长度.D、横坐标伸长到原来的倍,纵坐标不变
8、,再向右平移1个单位长度.3、函数的图像如图226所示,则函数的图像大致是 ( )4、函数与的图像关于 ( ) A、直线对称 B、轴对称 C、轴对称 D、原点对称5、若函数满足,且时,.则函数的图像与函数的图像的交点个数为 ( )A、3 B、4 C、6 D、86、函数与函数的图像分别如图227()()所示.则函数的图像可能是 ( )图 2-277、把函数的图像向左平移1个单位长度得到函数 的图像.8、指数函数的图像如图228所示,则二次函数的顶点的横坐标取值范围是 . 9、若则函数的零点为,的零点为,则的取值范围是 10、若直角坐标平面内的两点满足条件:都在函数的图像上;关于原点对称,则称函数对是函数的一对“友好点对”(点对于看作同一对“友好点对”).已知函数,则此函数的“友好点对”有 对.11、作出下列函数的图像. (1) (2) (3) (4) (5) (6) (7)12、已知函数.(1)求函数的单调区间; (2)求得取值范围,使得方程有4个不等实根.