收藏 分享(赏)

二空间两条直线.doc

上传人:weiwoduzun 文档编号:2083173 上传时间:2018-08-31 格式:DOC 页数:14 大小:88.50KB
下载 相关 举报
二空间两条直线.doc_第1页
第1页 / 共14页
二空间两条直线.doc_第2页
第2页 / 共14页
二空间两条直线.doc_第3页
第3页 / 共14页
二空间两条直线.doc_第4页
第4页 / 共14页
二空间两条直线.doc_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、二空间两条直线14 两条直线的位置关系(略)15 平行直线一、素质教育目标(一)知识教学点1公理 4,即平行公理2等角定理及推论(二)能力训练点1利用联想的方法,掌握并应用由平面内引伸到空间中的平行公理2充分利用构造的方法证明等角定理,为下一节两条异面直线所成的角的定义提供了可能性与唯一性3通过本节课的学习,让学生认识到在平面几何中成立的结论或定理等,在用于非平面图形时,须先证明二、教学重点、难点、疑点及解决方法1教学重点:让学生掌握平行公理及其应用2教学难点:等角定理证明的掌握及其应用3教学疑点:正确理解等角定理中命题的条件:两个角的两边分别平行且这两个角的方向相同三、课时安排1 课时四、教

2、与学的过程设计(一)复习两条直线的位置关系(幻灯显示)师:空间中两条直线的位置关系有哪几种?生:三种:相交、平行、异面异面直线是指不同在任何一个平面内的两条直线相交直线和平行直线也称为共面直线师:异面直线的画法常用的有哪几种?生:三种如图 138,a 与 b 都是异面直线师:如何判定两条直线是异面直线?生:(1)间接证法:根据定义,一般用反证法(2)直接证法:根据例题结论:过平面外一点与平面内一点的(二)平行公理师:在平面几何中,如图 140,若 ab,cb,则 a 与 c 平行吗?生:平行师:也就是说,在平面中,若两条直线 a、c 都和第三条直线 b 平行,则ac这个命题在空间中是否成立呢?

3、师:实际上,在空间中,若 ab,cb,则 ac 也成立我们把这个结论作为一个公理,不必证明,可直接应用平行公理:平行于同一条直线的两条直线互相平行如图 141,三棱镜的三条棱,若 AABB,CCBB,则有AACC下面请同学们完成下列的例题,巩固应用平行公理例已知四边形 ABCD 是空间四边形(四个顶点不共面的图 1-41 四边形),E、H 分别是边 AB、AD 的中点,F、G 分别是边 CB、CD师分析:要证明四边形 EFGH 是梯形,即要证明四边形 EFGH 的一组对边平行,另一组对边不平行;或证明一组对边平行且不相等具体用哪一种方法,我们来分析一下题意:E、H 分别是边 AB、AD 的中证

4、明:如图 142,连结 BDEH 是ABD 的中位线,根据公理 4,EHFG,又FGEH,四边形 EFGH 是梯形(三)等角定理师:平行公理不仅是今后论证平行问题的主要依据,也是证明等角定理的基础等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等已知:BAC 和BAC的边 ABAB,ACAC,并且方向相同求证:BACBAC师分析:在平面内,这个结论我们已经证明成立了在空间中,这个结论是否成立,还需通过证明要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等根据题意,我们

5、只能证明两个三角形全等或相似,为此需要构造两个三角形,这也是本题证明的关键所在证明:对于BAC 和BAC都在同一平面内的情况,在平面几何中已经证明下面我们证明两个角不在同一平面内的情况如图 143,在 AB、AB,AC、AC上分别取ADAD、AEAE,连结 AA、DD、EE,DE、DEABAB, ADAD,AADD是平行四边形根据公理 4,得:DDEE又可得:DDEE四边形 EEDD 是平行四边形EDED,可得:ADEADEBACBAC师:若把上面两个角的两边反向延长,就得出下面的推论推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等从上面定理的证明可以知道

6、:平面里的定义、定理等,对于非平面图形,需要经过证明才能应用下面请同学们完成练习(四)练习(P14 练习 1、2)1把一张长方形的纸对折两次,打开后如图 144 那样,说明为什么这些折痕是互相平行的?答:把一张长方形的纸对折两次,打开后得 4 个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的ABCABC四边形 BBCC 是平行四边形BCBC同理可证:ACAC,ABABABCABC(五)总结这节课我们学习了平行公理和等角定理及其推论平行公理是论证平行问题的主要根据,也是确定平面的基础等角定理给下一节两条异面直线所成角的定义奠定了基础这节课我们还明确了在平面几

7、何中成立的结论或定理等,在用于非平面图形时,须先证后用五、作业教材 P17 习题二 4、5、6、7、8六、板书设计一、平行公理平行于同一条直线的两条直线互相平行二、等角定理如果一个角的两边和另一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等例:已知:四边形 ABCD 是空间四边形(四个顶点不共面的四边形),E、H 分别是边 AB、AD 的中点,F1、G 分别是边 CB、CD 上的点,求证:四边形 EFGH 是梯形等角定理的证明:已知:BAC 和BAC的边 ABAB,ACAC,并且方向相同求

8、证:BAC=BAC练习 2求证:ABCABC七、参考资料立体几何全一册教学参考书三点一测丛书高一数学16 两条异面直线所成的角一、素质教育目标(一)知识教学点1两异面直线所成角的定义及两异面直线互相垂直的概念2两异面直线的公垂线和距离的概念及两异面直线所成角及距离的求法(二)能力训练点1利用转化的思想,化归的方法掌握两异面直线所成角的定义及取值范围,并体现了定义的合理性2利用类比的方法掌握两异面直线的公垂线和距离等概念,应用在证题中体现了严格的逻辑思维,并会求两条异面直线所成角与距离(三)德育渗透点进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质二、教学重点、难点、疑

9、点及解决方法1教学重点:两异面直线所成角的定义;两异面直线的公垂线及距离的概念;两异面直线所成角和距离的求法2教学难点:两异面直线所成角及距离的求法3教学疑点:因为两条异面直线既不相交,但又有所成的角,这对于初学立体几何的学生来说是难以理解的讲解时,应首先使学生明了学习异面直线所成角的概念的必要性三、课时安排1 课时四、教与学的过程设计(一)复习提问引入课题师:上新课前,我们先来回忆:平面内两条相交直线一般通过什么来反映它们之间的相互位置关系?生:通过它们的夹角如图 146,a、b 的位置关系与 a、b的位置关系是不一样的,a、b 的夹角比 a、b的夹角来的小师:那么两条异面直线是否也能用它们

10、所成的角来表示它们之间相互位置的不同状况例如要表示大桥上火车行驶方向与桥下轮船航行方向间的关系,就要用到两条异面直线所成角的概念(二)异面直线所成的角师:怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?生:可以把异面直线所成角转化为平面内两直线所成角来表示如图 147,异面直线 a、b,在空间中任取一点 O,过点 O 分别引 aa,bb,则 a,b所成的锐角(或直角)叫做两条异面直线所成的角师:针对这个定义,我们来思考两个问题问题 1:这样定义两条异而直线所成的角,是否合理?对空间中的任一点 O有无限制条件?答:在这个定义中,空间中的一点是任意取的若在空间中,再取一点 O

11、,过点O作 aa,bb,根据等角定理,a与 b所成的锐角(或直角)和a与 b所成的锐角(或直角)相等即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性注意:有时,为了方便,可将点 O 取在 a 或 b 上问题 2:这个定义与平面内两相交直线所成角是否有矛盾?答:没有矛盾当 a、b 相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广师:在定义中,两条异面直线所成角的范围是(0,90,若两条异面直线所成的角是直角,我们就说这两条异面直

12、线互相垂直(出示模型:正方体)例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面(三)两条异面直线的距离师:(出示模型)观察模型,思考问题:a 与 b,a与 b 所成角相等,但是否就表示它们之间的相互位置也一样呢?生:不是它们之间的远近距离不一样,从而得到两条异面直线的相互位置除了用它们所成的角表示,还要用它们之间的距离表示师:那么如何表示两条异面直线之间的距离呢?我们来回忆在平面几何中,两条平行线间的位置关系是用什么来表示的?生:用两平行线间的距离来表示师:对如图 150,要知道它们的距离,先要定义它们的公垂线,如图150:ab,ab,ca,c

13、a,则 a、b 与 a、b的公垂线分别为 c、c,且线段 AB、AB的长度分别是 a、b 与 a、b之间的距离对两条异面直线的距离,我们可以应用类似的方法先定义它们的公垂线定义:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线师:根据定义,思考问题问题 1:和两条异面直线都垂直的直线有多少条?答:无数条因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义问题 2:两条异面直线的公垂线有几条?答:有且只有一条(出示正方体骨架模型),能和 AA、 BC都垂直相交的只有 AB一条;能和 AB 与面 AC内过点 A的直线都垂直相交的直线只有一条 AA师:有了两条异面直

14、线公垂线的概念,我们就可以定义两条异面生成的距离定义:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离如图 152 中的线段 AB 的长度就是异面直线 a、b 间的距离下面,我们来完成练习和例题(四)练习例设图 153 中的正方体的棱长为 a,(1)图中哪些棱所在的直线与直线BA成异面直线?(2)求直线 BA和 CC所成的角的大小(3)求异面直线 BC 和 AA的距离解:(l)A平面 BC,而点 B,直线 CC都在平面 BC直线 BA与 CC是异面直线同理,直线 CD、DD、DC、AD、BC都和直线 BA成异面直线(2)CCBB,BA和 BB所成的锐角就是 BA和 C

15、C所成的角=ABB=45,BA和 CC所成的角是 45(3)ABAA,ABAA=A,又ABBC,ABBC=B,AB 是 BC 和 AA的公垂线段AB=a,BC 和 AA的距离是 a说明:本题是判定异面直线,求异面直线所成角与距离的综合题,解题时要注意书写规范【练习】(P16 练习 1、3)1(1)两条直线互相垂直,它们一定相交吗?答:不一定,还可能异面(2)垂直于同一直线的两条直线,有几种位置关系?答:三种:相交,平行,异面3画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直线解:(五)总结本节课我们学习了两条异面直线所成的角,以及两条异面直线间的

16、距离和有关概念并学会如何求两条异面直线所成角及距离,懂得将其转化为平面几何问题来解决五、作业P17-18 中 9、10六、板书设计1两条异面直线所成的角:经过空间任意一点 O,分别引异面直线 a、b的平行线 a,b,把直线 a,b所成的锐角(或直角)叫两条异面直线所成的角2两条异面直线互相垂直:如果两条异面直线所成的角为直角,则说它们互相垂直3两条异面直线的公垂线:把和两条异面直线都垂直相交的直线叫两异面直线的公垂线4两条异面直线的距离:两条异面直线的公垂线夹在这两条异面直线间的线段的长度,叫做两条异面直线的距离例:设图中的正方体的棱长为 a(1)图中哪些棱所在的直线与直线 BA成异面直线(2)求异面直线 BA和 CC所成的角的大小(3)求异面直线 BC 和 AA的距离七、参考资料立体几何全一册教学参考书三点一测丛书高一数学

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报