收藏 分享(赏)

第二讲函数及其性质同步提升训练(附解析).doc

上传人:发发发 文档编号:20265364 上传时间:2023-04-05 格式:DOC 页数:6 大小:582.50KB
下载 相关 举报
第二讲函数及其性质同步提升训练(附解析).doc_第1页
第1页 / 共6页
第二讲函数及其性质同步提升训练(附解析).doc_第2页
第2页 / 共6页
第二讲函数及其性质同步提升训练(附解析).doc_第3页
第3页 / 共6页
亲,该文档总共6页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、下载来源:高中数学资源群:730891763,高中各科资料群:733069285,一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1二次函数yx22x2的值域是()ARB C0,) D1,)2函数y的定义域为()Ax|x1 Bx|x0 Cx|x1或x0 Dx|0x13下列函数中,在区间(1,)上是增函数的是()Ayx1 By Cy(x1)2 Dy14设集合A1,3,5,若f:x2x1是集合A到集合B的映射,则集合B可以是()A0,2,3 B1,2,3 C3,5 D3,5,95下列各个图形中,不可能是函数yf(x)的图象的是()6幂函数的图

2、象过点(2,),则它的单调递增区间是()A(,1) B(0,) C(,0) D(,)7已知xN,f(x),则f(3)等于()A5 B4 C3 D28下列四种说法正确的有()函数是从其定义域到值域的映射;f(x)是函数;函数y2x(xN)的图象是一条直线;f(x)与g(x)x是同一函数A1个 B2个 C3个 D4个9定义在R上的偶函数f(x),对任意x1,x20,)(x1x2),有0,则()Af(3)f(2)f(1) Bf(1)f(2)f(3)Cf(2)f(1)f(3) Df(3)f(1)f(2)10已知偶函数f(x)在区间0,)上单调增加,则满足f(2x1)f的x取值范围是()A. B. C.

3、 D.二、填空题(本大题共4小题,每小题5分,共20分请把正确答案填在题中横线上)11已知函数f(x)(m2m1)xm22m3是幂函数,且在(0,)上是减函数,则实数m_.12函数yf(x)的图象如图所示,根据函数图象填空:(1)f(0)_; (2)f(1)_;(3)若1x1x21,则f(x1)与f(x2)的大小关系是_13若函数f(x)kx2(k1)x2是偶函数,则f(x)的递减区间是_14已知二次函数f(x)ax22ax1在区间3,2上的最大值为4,则a的值为_三、解答题(本大题共4小题,共50分解答应写出必要的文字说明、证明过程或演算步骤)15(12分)画出下列两个函数的图象,并写出各自

4、的值域(1)y2x24x2,x; (2)y.16(12分)已知二次函数yf(x)的最大值为13,且f(3)f(1)5,求f(x)的解析式,并求其单调区间17(12分)有甲、乙两种商品,经销这两种商品所能获得的利润依次是p万元和q万元,它们与投入的资金x万元的关系有经验公式:px,q.现欲将9万元资金投入甲、乙两种商品,问:甲、乙两种商品分别投入多少万元资金时能获得最大利润?18(12分)已知函数f(x)(a0,x0),(1)求证:f(x)在(0,)上是单调递增函数;(2)若f(x)在,2上的值域是,2,求a的值参考答案:1.【解析】yx22x2(x1)211【答案】D2.【解析】0x1.故选D

5、.【答案】D3.【解析】由题意知yx1,y(x1)2,y1在(1,)上是减函数,y在(1,)上是增函数,故选B.【答案】B4.【解析】注意到题目中的对应法则,将A中的元素1代入得3,3代入得5,5代入得9,故选D.【答案】D5.【解析】函数应满足一个x对应一个y,显然只有A不符合【答案】A6.【解析】设幂函数为f(x)x把点(2,)代入得函数f(x)x2.f(x)x2的单调递增区间是(,0)【答案】C7.【解析】f(3)f(32)f(5)f(52)f(7)752.【答案】D8.【答案】A9.【解析】由已知0,得f(x)在x0,)上单调递减,由偶函数性质得f(3)f(2)f(1),故选A.此类题

6、能用数形结合更好【答案】A10.【解析】作出示意图可知:f(2x1)f2x1,即x.故选B.11.【解析】m2m11m1,或2.当m1.f(x)x0舍当m2 时,f(x)x3.【答案】2【答案】B12.【解析】由图象可直接观察到f(0)2f(1)3f(2)0.由图象可得到函数yf(x)在(1,1)上是增函数,由增函数的定义可得,当1x1x21时,f(x1)f(x2)【答案】(1)2(2)3(3)f(x1)f(x2)13.【解析】f(x)是偶函数,f(x)kx2(k1)x2kx2(k1)x2f(x),k1,f(x)x22,其递减区间为(,0【答案】(,014.【解析】f(x)的对称轴为x1,当a

7、0时,f(x)maxf(2)4,解得a;当a0时,f(x)maxf(1)4,解得a3.【答案】3或15.【解析】两个函数的图象分别如下图所示:(1)值域为;(2)值域为1,)16.【解析】f(3)f(1)5,对称轴为x1,又最大值为13,开口向下,设为f(x)a(x1)213(a0),代入x1,4a135,a2,f(x)2(x1)213.函数在(,1上单调递增,在1,)上单调递减17.【解析】设对乙商品投入x万元,则对甲商品投入(9x)万元,设利润为y万元,则y(9x)(x49)(2)213(0x9),当2,即x4时,ymax1.3.将9万元资金投入甲商品5万元,乙商品4万元时,能获得最大利润1.3万元18.【解析】(1)证明:设x1,x2(0,),且x1x2.则f(x1)f(x2)(),0x1x2,x1x20,x1x20.f(x1)f(x2)0,即f(x1)f(x2)则f(x)在(0,)上是单调递增函数(2)解:f(x)在,2上的值域是,2又f(x)在,2上是增函数,f,f(2)2.2且2,解得a,则所求a的值为.高中数学课件群:672887986,大学数学资料群:769456021,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 实用文档 > 往来文书

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报