1、数学论文之在小学数学教学中如何正确运用启发式教学 教学思想史上,启发式教学思想源远流长,它是古代个别教学下的必定产物。那么,在大力倡导素养教育的今天,如何正确运用启发式教学呢?结合本人的小学数学教学实践,谈几点粗浅的看法。一、启发式教学应重“导”而非“牵” “启发”一词,来源于我国古代教育家孔子教学的一句格言:“子曰:不愤不启,不悱不发。举一隅不以三隅反,则不复也。”朱熹对此解释说:“愤者,心求通而未得之意;悱者,口欲言而未能之貌。启,谓开其意;发,谓达其辞。”后来,人们概括孔子的教学思想,也汲取朱熹的注释,就使称为“启发”或“启发式”。从孔子的话和朱熹的解释来看,“启发”主为指教学的表现方式
2、艺术,强调教学的适度性和巧妙性。关于这一点,学记给予了更深化的详细说明:“道而弗牵,强而弗抑,开而弗达。”意思是,引导而不是牵着学生鼻子走,鼓舞而不是压抑学生,点拨而不是把答案全部端给学生。现在,启发式的教学思想已不再局限于“不愤不启,不悱不发”的详细情景状态,现代素养教育对启发式教学的要求是在如何教会学生学习和考虑上下功夫,“导” 已成为现代启发式教学思想的特点、策略和核心所在。但也存在导而牵的误区,详细表现为:第一,老师扶着学生走路,不肯放手,只满足课堂上就某一详细征询题的师生对答方式,把学生的思想限制在老师思维框架内,客观上限制了学生的求异思想和制造性。第二,不教点金之术,即不教学生学习
3、方法,学生只能顺其意,而未能继其志。针对这种现象,我认为在数学教学时应采取思路教学,采取“大处导,小处启”的策略,运用提纲契领-分析-综合的方法训练学生,把教材思路转化为老师本人的思路,再引导学生构成有个人特色的新思路。 例如在教学乘数是三位数的乘法时,由于学生已经掌握乘数是一位数、两位数乘法的计算方法,重点让学生理解“用乘数百位上的数去乘被乘数,末位与百位对齐”的结论。为了今后接着学习乘数是多位数的乘法,我认为如此设计教学比拟合理:一、复习:笔算,678,16728 二、试算:167128 ,让学生本人动手计算,通过学生的观察 、比拟,不难算出正确答案。然后让学生本人总结计算方法。这就在数学
4、教学中表达了教学思路。为学生今后的学习打下了良好的根底。二、启发式教学应注重“启”和“试”相结合 一切教学活动都必须以调动学生的积极性、主动性、制造性为出发点,引导学生主动探究,积极思维,通过本人的活动到达生动爽朗的开展。这是由于“事物开展的根本缘故在于事物内部的矛盾性”。学生的开展归根结底必须依赖其本身的主观努力。一切外在阻碍要素只有转化为学生的内在需要,引起学生强烈追求和主动进取时,才能发挥其对学生身心素养的宏大塑造力。因而,素养教育对启发式教学给予了更新的内涵:坚持老师的主导和学生的主体相结合,注重老师的“启发”和学生的“尝试”相结合。首先,尝试能够使学生获得成功的喜悦,面对全体学生而言
5、,“不求个个升学,但愿人人成功”是符合求学者的意愿和现实的。不管是优生仍然差生,都能够从尝试中获得成功,大大加强学生的学习决心,为他们获取新的成功预备良好的心理条件。其次,通过启发、引导学生动眼、动脑、动口、动手的尝试,既培养了学生的智力和才能,又使学生在亲身尝试中感遭到学习的乐趣,把单调乏味的“苦学”变为主动有趣的“乐学”。这就要求老师要尽可能增大学生学习的自由度,尽量启发、引导学生本人去尝试新知识,觉察新征询题。例如,在教学“20以内的退位减法”,老师让同桌二人分别扮演售货员和顾客,商店里有15支铅笔,卖出9支,还剩几支?老师启发学生能够通过各种途径本人觉察计算方法,学生积极主动地探求计算
6、方法。有的用小棒一根一根地数,得出159=6;有的把15分成10和5先算109=1,再算1+5=6;有的把9分成5和4,先算155=10,再算104=6;有的先算1510=5,再算5+1=6;有的想9 +( )= 15,由于9+6=15,因而159=6。如此,人人动脑筋尝试觉察,方法多种多样,人人都获得了成功。接着老师出示同类的征询题,启发学生把这种算法应用到同类征询题中。如此教学,学生真正成为学习的主人,到达了学思结合。三、启发式教学应注重启发点的“准”和“巧” 医生治病讲求对症下药,老师的启发因而要点在要害处,拨在迷惑时,才能指给学生“柳暗花明又一村”。因而,启发式教学要真正到达启迪思维,
7、培养智能,提高学生素养的目的,还必须注重启发点的优化。一是要“准”,让启发启在关键处,启在新旧知识的联接处。小学数学知识有特别强的系统性,许多新知识是在旧知识的根底上产生开展的。因而,在教学中老师要对学生加强运用旧知识学习新知识的指导。首先新课前的复习和新课的提征询要精心设计启发点,把握征询题的关键,真正起到启发、点拨和迁移作用。其次,要注重新旧知识之间的联络和开展,留意在新旧知识的连接点,分化点的关键处, 设置有层次,有坡度,有启发性、符合学生认知规律的系列提征询。让学生独立考虑,积极练习求得新知,掌握规律。然后老师引导学生把新旧知识串在一起,构成知识的系统构造。例如,推导平行四边形与长方形
8、的关系。教学时,在复习了长方形和平行四边形的特征和长方形的面积公式之后,能够用出示以以下图形: 宽 高 长 底 接着提征询:(1)平行四边形和长方形的长有什么关系?(2)平行四边形的高和长方形的宽有什么关系?(3)底与长,高与宽分别相等,那么这两个图形的大小会如何样?(4)用什么方法能证明这两个图形的面积相等?然后,老师引导学生用数方格和割补证明这两个图形重合,从而由长方形面积公式推导出平行四边形的面积公式。以上启发点利用长方形的面积公式,推导出了平行四边形的面积公式,如此的启发点充分起到了迁移作用,使学生理解新旧知识的内在联络,自然轻松的掌握了新知识,实现自主学习。二是要“巧”,在学有困难学
9、生盲然不知所措时,在中等生“跳起来摘果子”力度不够时,在优等生渴求能制造性的发挥聪明才智时予以点拨,使其茅塞顿开。例如,教学“能化成有限小数的分数特征”,通过师生打擂台,激发起学生的参与兴趣后,师征询:“有的分数能化成有限小数,有的分数不能化成有限小数,这里面蕴涵着一个规律,这个规律是在分子中呢,仍然在分母中?”学生一致认为规律在分母中。这时,师又征询:“能化成小数的分数的分母有什么特征呢?”组织学生讨论。当学生屡屡碰壁,思维出现“中断”“偏离”时,老师不再让学生漫无目的争论,而是适时地点拨指导,启发学生:“你们试着把分数的分母分解质因数,看能不能觉察规律?”一句话,使学生一下便找到了思维的打
10、破口,觉察了特征:“一个分数,假设分母中除了2和5以外不含有其他质因数,这个分数就能化成有限小数。”正当学生心满意足之际,老师又出示,3/15,先让学生推断,又激起矛盾;为什么分母含有其他质因数,它还能化成有限小数能?通过观察分析,最后让学生本人认识到所觉察规律的前面,还得补充个前提“最简分数”。可见,课堂上巧妙灵敏地启发,不但能使学生更好地理解数学知识,而且能使学生积极思维,提高学生思维的灵敏性、深化性和制造性。四、正确处理好启发式教学与讲授式教学的关系 有人认为:启发式教学符合素养教育的需要,应大力倡导,讲授式教学是应试教育的产物,应全盘否认,这就构成了如此一种现象:人们一方面全力确信启发
11、式教学而又理解不深,操作不透。另一方面尽力否认讲授式教学而又在时刻不由自主地动用。事实上,启发式教学是习惯个别教学的组织方式而产生,在培养人才低效的同时却在因材施教上占有优势。讲授式教学自古有之,尤其在十七世纪夸美纽斯提出了班级授课制之后,这种教学方式普及了全世界。在立即步入21世纪的今天,社会需要的是大批高素养的复合型人才,客观要求学校教育必须进展因材施教,也确实是启发式教学。但在小学阶段,由于学生的年龄特点,理性知识少等缘故,讲授式教学也是必不可少的。只有把启发式教学和讲授式教学有机结合起来,才能符合现代教育的需要。下面试以“三角形的面积”为例来说明。在教学三角形的面积计算之前,必须让学生
12、理解三角形的图形、分类,三角形的底及对应的高。由于学生初次接触这些知识,因而通过讲授式教学方式让学生掌握,为学习三角形面积打下根底。在教学三角形面积计算时,就要引导以学生本人探究为主,贯彻启发式教学。1、回忆平行四边形的面积是如何样推导出的?得出要把三角形面积计算征询题转化已学过图形的面积计算征询题。2、动手操作,把两个完全一样的三角形(直角三角形、锐角三角形、饨角三角形)拼成一个已经学过的图形。3、探究拼成的平行四边形的高、底与三角形的高、底有什么关系?平行四边形的面积与三角形的面积有什么关系?然后得出:任意三角形面积是相应长方形面积的一半,进而得出三角形的面积底高2。从中能够觉察,通过学生
13、动手操作,主动探究,加上老师的有机讲解、辅垫,学生轻松掌握了三角形面积的计算方法。因而,要运用好启发式教学,还要留意学习者的理性水平与教学方式的匹配原理。一般来说,较严密的方式构造最适宜处于理性水平较低的学习者,而松散的方式构造则最适宜处于理性水平较高的学习者。因而,每个方式都能够修正,提高或降低构造的松紧,以使方式习惯学生进展最正确学习的那个理性水平。以上三角形面积计算的教学实例,就属于探究类教学方式,通过老师的修正,构造严密程度属于中,匹配的理性水平是中,获得了良好的教学效果。当学生的理性水平较高时,能够合并上面教学实例中的1、2、3,让学生本人探究,割拼转化,推导公式。启发式教学的主旨是启发思维,训练才能。只有正确运用启发式教学,才能全面提高学生的综合素养,为社会提供大量的有用之才。我深信,坚持启发式教学,一定会给素养教育的阵地带来勃勃活力!