1、1相变和化学反应储能在建筑供暖空调领域的应用研究AppliedresearchofthermalstorageinphasechangeandchemicalreactioninthebuildingHVACfield提要以 1997 年召开的第 7 届国际储能会议文献为基础,综述了近年来国际上有关应用研究成果和动态,指出了近期该领域中一些值得研究的问题。关键词:蓄热相变化学反应应用研究2AbstractBasedontheliteratureofthe7thInternationalConferenceonThermalEnergyStorage,Reviewstheresearchprog
2、ressandtrendsoflatentheatstorageandchemicalreactioninheating,ventilationandairconditioning,andputsforwardsomeproblemsneededtobesolvedinthenearfuture.Keywords:thermalstorage,phasechange,chemicalreaction,appliedresearch1 引言近年来相变及化学反应储能研究的一个热点是其在建筑领域(包括建筑空调和供暖)的应用。这一方面是由于建筑行业在世界各国都是举足轻重的行业,其技术进步将产生明显的经
3、济效益和社会效益,另一方面是由于人们对环保和节能的日益重视以及昼夜电价分计制产生的经济驱动。1997 年日本召开的第 7 届国际储能会议论文集中的很大一部分文章集中在此领域,国际能源机构即 InternationalEnergyAgency(IEA)下属项目组 ECES(Energyconservationthroughenergystorage)讨论3确定的 1998 年启动历时 3 年的 Annex10(主题是相变和化学反应储热)也将相变和化学反应储热在建筑中的应用列为最主要的研究方向,其参加国家为加拿大、芬兰、德国、日本、波兰、瑞典、瑞士、英国和土耳其2。相变和化学反应储热在建筑空调和供
4、暖领域的应用研究主要分为 3 个方面:相变建筑围护结构、供暖储热系统和空调蓄冷系统,由于空调蓄冷系统方面的研究内容很多且自成体系,其研究情况已屡见报道,故在此只介绍相变和化学反应储热在前两方面的应用研究情况。就笔者所知,我国在此领域内的研究刚刚走步,且离实际应用还有相当距离。考虑到该领域的研究面较广,涉及建筑、暖通空调、材料和工程热物理等学科,需要引起我国上述领域研究者的足够关注,才能取得一些实质性成果,并使之真正具有工程应用价值。因此,本文将近年来发达国家在该领域的部分研究工作和研究动态作一简介,以期对我国该领域的研究有所帮助。2 研究综述21 化学反应储热在供暖和空调领域中的应用34德国
5、Fisher 博士研究了利用沸石储热系统调节热网峰谷负荷的供暖系统。其原理见图 1。该系统运行模式及其与建筑及供暖系统的连接方式见图 2。图 1 沸石储热系统工作原理图图 2 沸石储能系统运行模式及其与建筑及供暖系统的连接这一系统已在实际建筑中应用,建筑供暖面积为1625m2,热负荷(环 境温度-16 时)为 96kW,热源为热网供热系统,采用 7000kg 沸石,加热功率为 130kW,充热温度为130180,储热密度为 180kWh/m3,系统 COP 约为 1。522 相变建筑围护结构对微生物热性能的影响221 蓄热建筑结构对热舒适和空调能耗的影响4以往在湿热的环境中人们往往只重视强化通
6、风而忽略围护结构贮能对室内环境的改善作用,所以在建筑物中较多使用轻质结构(lightweightstructure)。HHirayama 等人利用模拟方法研究了建筑物围护结构热容对房间热性能的影响。他们以木结构和混凝土结构分别作为轻质结构和重质结构的代表,模拟分析了空调和供暖系统不同运行模式下采用两种结构的建筑的热特性。空调和供暖系统的运行模式为:空调或供暖系统江作,渗新风;空调或供暖系统每天6:0024:00 间歇运行;空调或供暖系统每天 24h 连续运行,以保证室内恒定的舒适温度。图 3 给出了能上能下 3 种情况下室温曲线。图 33 种情况下重质围护结构和轻质围护结构建筑内6的室温曲线注
7、:室温为合成温度(resultanttemperature)或运行温度(operativetemperature)研究结果表明,重质围护结构有以下优点:可降低室内温度波动,提高舒适度,使建筑供暖或空调不用或少用能;可以减小所需空气处理设备(加热及制冷)的容量,同时可使空调或系统利用夜间廉价电运行,降低空调或供暖系统的运行费用。空调供暖系统的运行策略对重质结构的使用效果有较大影响,此外房间的体积与表面积比、湿度控制及通风情况对使用效果也有一定的影响。重质建筑构件的使用效果受以下因素影响:建筑构件的热容及其放置位置,建筑朝向,建筑保温材料的性能和放置位置,通风情况,气象条件,空调或供暖系统的使用。
8、222 吸收太阳辐射热的相变蓄热地板5为降低冬季室温的变化幅度,减小供暖能耗,提高建筑7物的舒适度,S.Hokoi 等人讨论了在地板内安装吸收太阳辐高压的相变蓄热板的使用效果。该工作建立了分析采用相变地板的房间热性能的物理模型,研究了影响房间温度、房间平均温度的因素,分析了墙体和相变材料的储、传热过程,同时提出了确定所用相变材料最佳相变温度的准则。图 4 为模拟研究考虑的房间情况,图 5 为日射和外温条件,图 6 为采用相变地板和普通地板的房间地板和室内温度示意图。模拟研究分析了无蓄热系统和相变材料熔点分别为 11,13,15时房间温度和地板温度的逐时变化规律,并分析了通过墙、窗和地板等建筑构
9、件以及通风和辐射等不同传热方式的逐时热流量。分析结果表明:选择具有合适相变温度的相变材料很重要:相变温度太高,蓄热效果不明显,即白天地板和室温太高,夜间则太低;相变温度太低则相反;房间的平均温度与地板中是否有相变材料无关,与相变材料的相变温度也无关。模拟分析中,将地板温度视为常数(等于最佳相变温度),则可由定地板温度求得房间温度,这样做大大简化了分析,造成的误差却很小(0.1)。8图 4 房间示意图 图 5 日射和外温条件图 6 地板和室内温度示意图1 室温(含相 变材料,熔点 13)2 地板温度( 含相变材料熔点 13)3 室温(不含相 变材料 )4 地板温度(不含相 变材料)223 特朗勃
10、墙(TrombeWall)结合夜间电加热的蓄热系统6JOnishi 等人研究了被动式太阳房特朗勃墙(TrombeWall)结合夜 间电加热的蓄热系统的热性能,用 CFD模拟了以下 4 种工况的效果:电加热器置于特朗勃墙内;电加热器置于特朗勃墙室内侧;电加热器置于地板表面;与工况相同,但加热温度为 40。工况的电加热功9率为 1kW。模拟分析表明,相 变蓄能墙不仅能够有效利用太阳能,而且能贮存夜间电加热器加入的热量供次日白天使用;加热器置于墙内比放在墙表面效果要好;工况效果比工况略差。23 相变储热与供暖空调相结合的系统231 工程相变储能系统与吊顶送风结合7利用吊顶送风,无需安装送风管道,省时
11、省力。若不采用保温吊顶,还可节省建材。结合相变储能,吊顶送风的使用效果会更佳。T.Miura 等人利用吊顶送风进行了研究,送风方式有以下 4 种:吊顶送风;准备间用吊顶送风,白天则通过管道向室内送风;管道送风,吊顶回风;管道送风,门或墙上百叶回风。空调系统及运行设定温度有 3 种:不用相变储能系统,8:0018:00 开空调,空调运行温度设定值为26;用相变储能系统,白天(8:0018:00)降温,夜间(18:000:00)蓄冷,空调运行温度设定值为 26;与相同,但空调运行温度设定值为变量:8:0018:00 为 25,10:0013:00 为 25.5,13:0018:00 为 26。对比
12、研究表10明,采用上变储能系统的吊顶送风方式比较经济,室内平均辐射温度低于采用其它 3 种空调系统及送风方式的相应温度;利用吊顶送风可以减小室温和平均辐射温度差,有利于空调系统的控制;将空调运行和平均辐射击温度差,有利于空调系统的控制;将空调运行温度从一常数改为变量,可以保证热负荷在一天内保持均匀,避免出现峰值负荷。232 利用楼板蓄热的吊顶空调系统为了减少白天空调电耗,利用建筑结构蓄热是一条有效的途径。典型的方法是在楼板中安装冷、热水管(或电加热器)。M.Udagawa 等人8研究了夏季此类系统的使用效果,夜间(23:00次日 7:00),利用空调系统使楼板降温,冷却后的楼板可降低次日午时热
13、负荷。他们对以下 4 种情况进行了研究:空调系统仅在白天运行;24h 运行,设定室温为 22(18:00次日 8:00);吊顶送冷风,设定吊顶温度为 16,供冷时间为 23:00次日 7:00;在楼板中装冷水管,冷水温度为 7,供冷时间为 23:00次日 7:00。研究结果显示:方式对于降低白天冷负荷最为有效,虽然总负荷与方式相近,但由于方式仅用夜间用电,所以比方式节省运行费。11方式全部用白天高价,室内温度也较高;方式虽然耗能最少,但总耗能量却最大。Ryu 等人9比较了一种天花板、地板蓄热系统与传统空调运行模式的使用效果。系统结构如图 7 所示。夜间电价低谷时,通向房间的送风阀关闭,空气在天
14、花板空间内循环流动,冷却天花板和地板。白天,送风阀打开,将冷风送到房间。图 7 利用楼板蓄热的空调系统实验研究了夜间蓄冷 10h(22:00次日 8:00)、早晨蓄冷 3h(5:008:00)和只在办公时间开空调系统 3 种模式下房间温度和地板温度以及人体热反应预测值 PMV 逐时变化情况。结果表明,模型导致清晨室内温度降至 22.5,房间温度太低;模式在办公开始时间房间温度骤然降低,但PMV 保持在0.3范围内,最稳 定;模式比模式省电 22%。12此外,通过模拟程序 PSSP 模拟分析了以下 7 种工况下的室内温度和电耗情况:认间不蓄冷;蓄冷 10h,出口空气温度 16;蓄冷 10h,出口
15、空气温度 12;蓄冷 10h,出口空气温度 8;蓄冷 5h,出口空气温度 16;蓄冷5h,出口空气温度 12;蓄冷 5h,出口空气温度 8。结果表明:10h 蓄冷会导致房间温度过低;5h 蓄冷时房间舒适程度相对较高;工况的 PMV 保持在0.5 内;与传统空调系统相比,工况和工况的能耗分别降低 45%和 75%,工况,的运行费用分别降低 27%,37%和 47%。M.Yamaguchi 等人10讨论了带有相变蓄热的房间地板的加热系统,由于在日本夜间电价仅为白天的 1/3,因此准备间使用热泵作为热源,并结合相变蓄热地板是比较经济的运行模式。研究的房间条件如下:房间面积 40m2,高 2.4m,无
16、窗,总传热系数 K=1.94W/(m2/),房间热损失 1.79kW,室外空气温度为-3 ,室温为 23。地板由上往下依次为相变材料层、水管和隔热材料,面积 26m2。相变材料:Na2SO410H2O,熔点为 32,凝固点为 30,贮热密度 43.0Wh/kg,总蓄热量 28.5kW。采用水 -水热泵,夜间运行8h。压缩机功率为 2kW,供、回水温度分 别为 43和 37,流量为 15L/min。热泵 系统、输配管路和地板的连接如图 8 所13示。图 8 热泵系统、输配管路和地板的连接图图 9 显示了实验结果。结果表明房间温度可保持在 20左右。图 9 实验结果示意图(1 月 27 日 17:
17、00 至 1 月 28 日13:00)233 楼板储热系统的模糊预测控制11相变蓄热地板,由于其控制简单安全,可望得到广泛应用。在相变蓄热地板,由于其控制简单安全,可望得到广泛应14用。在相变蓄热地板的系统控制中,对次日所需热能的预测是很必要的。R.Mizuno 等人研究了预测方法,以确定夜间应将蓄热材料加热至多高的温度。他们建立了到达最高控制温度所需时间的预测公式,为保证最高设定温度不致过高或过低,他们用模糊推理法建立了所需热能的预测法,即如果逻辑前提(气候条件、环境温度和室内平均温度差以及两天热负荷之差)变化,就要改变设定的最高温度,文献11列出了 28种模糊控制结果。3 近期值得研究的一
18、些问题通过文献综述并结合自身的科研实践,我们认为以以下问题值得进一步研究:开发适合在建筑 队应用的相变材料;建立分析相 变建筑构件的物理模型,并使之与国际流行建筑热环境模拟软件匹配,在建筑热过程模拟程序中添加考虑相变储能建筑结构的模块,使相变建筑构件使用效果的计算具有通用性和可比性;15研究相变储 能构件的使用条件(包括气象条件)及其设计方法;开展与模拟 研究对应的实验研究,以验证/修正模拟研究结果。笔者受知识、水平和视角的局限,以上综述和所提问题难免偏颇,诚望得到批评指正。参考文献1 张寅平,胡汉平,孔祥冬,等。相变贮能-理论和应用。合肥:中国科学技术大学出版社,1996。2FredrikS
19、etterwall.Phasechangematerialsandchemicalreactionsforthermalenergystorage-Aproposalforfuturework.国际能源机构内部报告。3SFischer.Thermochemicalenergystoragewithzeolite13X.ProcofWorkshopIEAAnnex10,Sept,1997,Stockholm,Sweden.164YHirayama,SJollyandWJBatty.Investigationofthermalenergystoragewithinbuildingmassinnor
20、thernJapanthroughdynamicbuildingandbuildingservicessimulation.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:355-360.5SHokoi,TKuroki.Useofphasechangematerialtocontrolindoorthermalenviroment.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:337-342.6TOnishi,HSoeda,MMi
21、zuno.Numericalsimulationofdistributedheatstoragesysteminaresidentialroomwithamassivewall.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:343-348.7TMiura,KSuzuki.Computeranalysisofthecoolingloadinanofficebuildingthroughappliedthermalstoragebyairsupplythroughtheceilingplenum.Procof7th
22、InterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:181-186.8MUdagawa,NMaki,HRoh,etal.Studyontheheatstoragetypeofair-conditioningsystemusingfloorslabthermalmassforofficebuilding,P17rocof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:175-180.9YRyu,etal.Astudyonenvironmentalcharacteris
23、ticsoftheair-conditioningsystemwithfloorthermalstorage.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:361-36610MYamaguchi,SSayama,etal.Heatstoragewithphasechangematerialforhousefloorheating.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:349-353.11RMizuno,YAsana,HTakamura.Astudyonthefuzzypredictioncondtrolofthefloorheatingsystemconstructedoflatent/sensibleheatstoragematerialsusingoff-peakelecturicityequippedinanagedfacility.Procof7thInterConfonThermalEnergyStorage,June,1997,Sapporo,Japan:163-168.