收藏 分享(赏)

谱相关密度切片分析在滚动轴承故障诊断中的应用.pdf

上传人:weiwoduzun 文档编号:1775592 上传时间:2018-08-22 格式:PDF 页数:3 大小:149.54KB
下载 相关 举报
谱相关密度切片分析在滚动轴承故障诊断中的应用.pdf_第1页
第1页 / 共3页
谱相关密度切片分析在滚动轴承故障诊断中的应用.pdf_第2页
第2页 / 共3页
谱相关密度切片分析在滚动轴承故障诊断中的应用.pdf_第3页
第3页 / 共3页
亲,该文档总共3页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第25卷第S期 振动与冲击Journal ofVibrafion and Shock Vol 25Nos 2006谱相关密度切片分析在滚动轴承故障诊断中的应用毕果陈进何俊周福昌(上海交通大学振动、冲击、噪声国家重点实验室,上海200240)摘要本文在二阶循环统计量理论的基础上对滚动轴承点蚀故障模型进行了循环平稳分析,其谱相关密度在循环频率域具有离散的故障特征,可以用于故障识别。针对谱相关密度计算量庞大且信息冗余的特点,本文提出了谱相关密度切片分析,给出了兼顾计算效率和估计精度的频域平滑算法。仿真分析和实际点蚀故障信号证明了谱相关密度切片分析的实用性。关键词:谱相关密度切片分析,滚动轴承,故障诊

2、断,循环平稳中固分类号:TP206TP911文献标识码;ATHE APPLICATION OF SLICE ANALYSIS OF SPECTRAL CORRELATION DENSITYIN ROLLlNG ELEMENT BEARlNG DIAGNOSISGuo Bi din Chen dun He FuChang Zhou(State Key LabofVibrafion,Shock&Noise,Shanghai Jicotong Univ,sh曲ai 200240)Abstract This paper is focused on the second-order eyclostafi

3、onarity,Cyelostutionary analysis ofthe vibration signa!ofrollingelement bearing suffered from point defects shows that its S1)ecWal Correlation Densj押(so矾possesses discrete characteristics incyclic frequency domain,which can be employed for fault diagnosisHowever,normou$computation is an obstaclc of

4、 themethod in praeliceIn this paper,the SSCD method is brought forward,wlfieh utilizes SOme slices ofthe SCD for fault diagnosisSpectral smoothhlg algorithm aiming to a certain slice ofSCD is detailed after theory analysisSimulation and expedmennd resultsdemonslratetheSSCD翻an effectivemethodforroUin

5、g elementbearlngdiagnosisKey Words:Slice Analysis ofSpectral Correlation Dansity,Rolling Element Bearing,Fault Diagnosis,Cyclostationarity0 引言旋转机械周期性的运转方式使其振动信号具有循环平稳的特点。循环平稳信号是一类特殊的非平稳信号,其统计特征周期时变,根据周期性统计特征的不同,循环平稳信号可分为一阶、二阶及高阶循环平稳。本文的工作围绕二阶循环平稳展开,轴承点蚀故障模型的谱相关密度在循环频率域具有离散的故障特征,可以用于识别隐含在信号中的故障周期。谱相关

6、密度在频率和循环频率组成的双频率平面上表征信号的特征,其计算量相当庞大。由于特征循环频率处的谱相关密度切片具有明显高于其它位置的连续能量分布,因此考虑仅利用个别切片到达故障识别的目的,称这种方法为谱相关密度切片分析。谱相关密度属于谱估计的范畴,可以采用不同的算法对其进行估计。本文针对谱相关密度切片提出了频域平滑算法,平滑的本身对随机噪声具有一定的消除作用。可以保证一定的估计精度,利用FFT快速算法使国家自然科学基金重点项目资1琦(50335030);国家自然科学基金疆目资助(50175068)作者简介:毕果,女,在读博士,02154747450,104得谱相关密度切片分析具有较高的计算效率,有

7、利用实际中的应用。1 二阶循环统计量理论11 循环统计量对于非平稳信号x(f),当其自相关函数周期时变时,称该信号二阶循环平稳口】:疋(f,r)=Ex(t+f2)xOf2) ,。:E扛O+n矗+r2)xO+月瓦一r2) 【1J可以用样本平均估计集总平均:宜(fr)一A一。I+lira一,川+一瓦+争x。+一写一;)(2)毫以)表示B“f)的估计。由于RAt,)为周期函数,其Fourier系数可以表示为:碍(理砉r驰咖一出(力被称作循环自相关(Cyclic Autocorrelation,简称CA),口为循环频率(Cyclic Frequency,简称CF)。定义CA关于时延f的Fourier变

8、换为谱相关密度(Spectral Correlation Density,简称SCD):第S期 毕果等:谱相关密度切片分析在瘫动轴承故障诊断中的应用 28LS:u1垒LR:mf倒1clf 可以根据式(2)时变自相关的估计根据SCD和CA的定义得到SCD的估计,称为SCD的时域平均算法。也可以利用频域平滑算法来估计SCDt3】:雪一4(f);A”lira。lira五17石1 一j=竺瓦,o,v+吖2)墨,(一叫2)咖 一以,(f,v)为信号x(f)在r区间内的Fourier变换:SCD诒(,fo)。,:将上述谱片断依次向后平移M,重复求共轭和点积的运算,直到得到切片上的所有点。乞=z盏=:艺 型

9、:竺鼍=竺!亡蠹兰图1算法图解墨。(f,y)垒【竺x(u)e-i2”幽 (6) 2 轴承点蚀故障模型1。2 谱相关密度估计实际对SCD进行估计时,无法实现式(5)的数学极限运算,只能利用有限长度的数据实现。因此, SCD估计与谱平滑间隔,和数据长度r有关,其离散形式为31:m可1石1,笺: (7)瓦。(f,f+卅2+幔)五n,一叫2+圮)其中k,(f,门为区间m上的离散Fourier变换:兄;(f,f)Aoe,,(饵)x(t-leT,)e。w“珥 (8)式中,符号u表示离散形式,。(f)是长度为血的窗函数。t和E分别表示信号时域和频域的分辨率。=AfC为频域平滑长度,N=AtI+1是数据总点数

10、。由式(7)、(8)可知,SCD在cF域上的分辨率Aa=lAt,谱平滑间隔,即频率域上的分辨率,且AtAf=M。当吖为一时,实际是利用瞬时谱相关作为SCD的估计。从估计的角度来看,利用瞬时值估计信号的统计特征并不十分准确,合理选择平滑点数膨才能有效保证估计的精度。图1为CF等于处的SCD切片s2(f,)。,的计算图解,其中e表示求共轭,o表示点积。首先对点离散信号j(帕进行Fourier变换得到牙(,),并根据采样频率和所要达到的频率分辨率,确定切片上谱平滑长度M;然后从贾)的起始点开始,得到长度为吖的谱片断重(,)。,并计算其共轭膏(力。,;选择与该谱片断中心颁率相距的同长度谱片断量+)。,

11、求X(f+ao)。,与j+(,)。,的点积,得到处的滚动轴承的点蚀故障会引起系统产生周期性的冲击,形成以固有频率为载波的振荡信号j“)。当点蚀发生在内圈时,s(f)会受到转频,的调幅作用。由于滚珠和滚道之间不可避免的存在微小滑动,滚动轴承点蚀故障模型可以表示为【4】:xO)=4jpiT一)+月(f) f9), 式中,r表示冲击产生的平均周期,月ff)为零均值的平稳随机噪声。幅调制4。为周期点过程,内圈故障时频率为转频,外圈故障时为常数。f;表示冲击相对于r的微小波动,假定为J相关随机过程。对该模型进行循环平稳分析得到其SCD为1+1:s:U、=昙su十-8i)su一等)唾缸)1 ieZ口EZ

12、a=a1+qa2 i。q0 00)疋(门 口=00 else其中q;】r,=f,为E(42)的Fourier变换系数,唾似)为“,。概率密度函数的Fourier变换,S为J(,)的Fourier变换,E(,)为信号的功率谱。由式(10)可知,滚动轴承外圈点蚀故障的SCD在CF域的特征为,兀:内圈点蚀故障的SCD在CF域的特征为,吒够(其中厶,厶分别为外圈通过频率和内圈通过频率,Z为转频,n,keZ)。根据式(9)构建内圈点蚀故障仿真信号,其中Z=29Hz,矗=117Hz,信噪比为14dB,随机过程往),。的均方差为转速的1。计算CF等于OHz,2f,矗,矗士Z,2矗,2厶f,3f,一上以及其问

13、一些等间距的SCD切片,构成了整个SCD三维图。振动与冲击JournalofVibration andShock 2006年第25卷图2仿真信号(a)时域波形(b)SCD三维图如图2(b)所示,SCD在cF域上具有离散故障特征。从另角度来看,SCD在CF域上的离散特征正是由于在特征CF处的SCD切片具有明显连续能量分布造成的。因此,可以根据先验知识选择滚动轴承的某些特征频率,例如内、外圈通过频率(矗,厶)、滚动体通过频率(厶)以及轴频(Z)和保持架公转频率(Z)等,计算这些位置上的SCD切片,通过这些切片之间的对比判断轴承的运转状态。称这一方法为滚动轴承的谱相关密度切片分析(Slice Ana

14、lysis Of Spectral CorrelationDensity,简称SSCD)。图2(b)qaq特征CF处的SCD切片也具有微小的能量分布,主要是由于噪声和估计误差的存在,但相比特征处的切片可以忽略。3 轴承实例图3是滚动轴承外圈点蚀故障的SSCD分析。实际轴频为123Hz,其余特征频率分别为正=4,7Hz,=375Hz,矗=609Hz,局=49OHz外圈通过频率处的SCD切片具有明显高于其他切片的连续谱结构。因此,可以判断该轴承产生了外圈故障。滚动轴承工作状态并不十分严格,滚道和滚珠之问存在一定的间隙,当轴承运转时会产生一定的随机振动。故障的存在使这种本底噪声有所增加,同时由于估计

15、误差的存在使得外圈故障特征CF外的其他切片也存在微小波动。拳遵? ”j噱田3滚动轴承外圈故障SSCD分析囤4滚动轴承内圈故障SSCD分析图4为滚动轴承内圈点蚀敲障的SSCD分析。特征频率为Z司17隆,Z=45持,厶=357Hz,矗=5791fz,凡=466Hz。当点蚀位于轴承内圈时,故障的绝对位置随轴承运转而周期性的改变,对故障引起的冲击产生以转速为周期的调幅作用。如图4所示,信号的轴频和内圈通过频率处的SCD切片相对于其他切片有明显的连续谱峰,验证了轴承模型循环平稳分析的理论结果,说明该滚动轴承产生了内圈点蚀。4 结语滚动轴承点蚀故障模型具有二阶循环平稳特征,其SCD在CF域具有反映故障特征

16、的离散频谱结构,特征CF处的SCD切片具有明显高于其他切片的连续谱结构。因此,可以预先根据滚动轴承特征频率选择有限个CF进行SSCD分析,通过切片之间的对比判断滚动轴承的运转状态。由于算法本身对分析结果影响较大,针对谱相关密度切片,本文对兼顾计算效率和估计精度的频域平滑算法进行了详细的研究,该算法对于利用循环平稳分析识别信号特征具有广泛的意义。参考文献【1】 轧SRoberts,W ABrown and H HLoomis comput砸oIlallyEfficient Algorithms for Cyclic SrIecWal AnalysisSi弘alProoessing19914:38

17、-49【2j砒屯GardnerIutrodttctionrandom proceesag wthapplications to sigals and systems,New York:McGraw-Hill,1990【3】wAGardnerMeasure of spectral correlation一-m髓TramsonAcoustics,SignalProcessing,1986,34(5):1111-1123f4】 R B恕呲LAntoni and SChobssard:m RelationshipBetween Spectral Con-elation and Envelope Anaiy醯s in theDial目aosfios of Bearing Faults and Other CyclnstationaryMachine Signals,Mechanical Sys培m and Signal Processrig2001,15(s):945-962

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 企业管理 > 经营企划

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报