1、1导数及其应用1若函数 fx在 ab, 上存在唯一的 x ()ab满足 afxfba,那么称函数 fx是ab,上的“单值函数”.已知函数 32fm是 0, 1()2上的“单值函数” ,当实数 a取最小值时,函数 fx在 0, 上恰好有两点零点,则实数 的取值范围是_【答案】 427,2已知函数 ,其中 e 为自然对数的底数,若不等式 恒成立,则 b/a 的最大值为_【答案】1/e3已知函数 321fxax在 ,上单调递减,则 a的取值范围是_【答案】 ,4若曲线 lnyx在 与 xt处的切线互相垂直,则正数 t 的值为_.【答案】 2e5定义在 R上的奇函数 fx的导函数满足 fxf,且 31
2、fx,若 205fe,则不等式 xfe的解集为_【答案】 1,6函数 3293,fxx若函数 gxfm在 R上有 3 个零点,则 m的取值范围为_【答案】 (-24,8)27已知函数 2gxa, 31lnfxx,若存在 10,x,存在 21,x使得12f成立,则实数 的取值范围是_【答案】 ,48函数 ln(1)fxkx,若 0fx的解集为 ,st,且 ,t中只有一个整数,则实数 k的取值范围为_。【答案】 142lnl3,9定义在 R上的函数 fx的导函数为 fx ,满足 fxfx ,则不等式 4x244fxf的解集为 【答案】 8,10设函数 32()(1)fxax有两个不同的极值点 1x
3、, 2,且对不等式 12()0fxf恒成立,则实数 a的取值范围是 【答案】 (,211已知函数 kxf), )1(2ln)(2exg,若 )(xf与 g的图象上分别存在点 NM,,使得MN关于直线 ey对称,则实数 k的取值范围是 【答案】 2,12设函数 ln,mfxR,若对任意 0,1fbfaa恒成立,则 m的取值范围为 【答案】 1,413设定义域为 0,的单调函数 fx,对任意 0,,都有 2log6fx,若 0x是方程fxf的一个解,且 0,1N*a,则实数 a_【答案】1314已知方程 2ln2|xm,有且仅有四个解 1234,x,则 1234mxx_【答案】 4e15已知函数3214()fxx,直线 l: 920xyc,若当 2,x时,函数 ()yfx的图象恒在直线 l 下方,则 c的取值范围是 【答案】 ,616定义在 R上的函数 ()fx的导函数为 ()fx,且满足 (3)1f, (2)3f,当 0x时有 ()0fx恒成立,若非负实数 a、 b满足 21ab, 2ab,则 a的取值范围为 【答案】 4,3517已知 ab, 为正实数,直线 yxa与曲线 ln()yxb相切,则2ab的取值范围_.【答案】 1(0,)218设函数 xef2, xeg2)(,对 ),0(,21,不等式 1)(21kxfg恒成立,则正数 k的取值范围为 【答案】 1,