1、人教版八年级上册 期末总复习,第十一章全等三角形(复习),一.全等三角形:,1:什么是全等三角形?一个三角形经过哪些变化可以得到它的全等形?,2:全等三角形有哪些性质?,能够完全重合的两个三角形叫做全等三角形。一个三角形经过平移、翻折、旋转可以得到它的全等形。,(1):全等三角形的对应边相等、对应角相等。 (2):全等三角形的周长相等、面积相等。 (3):全等三角形的对应边上的对应中线、角平分线、高线分别相等。,知识回顾:,一般三角形 全等的条件:,1.定义(重合)法;,2.SSS;,3.SAS;,4.ASA;,5.AAS.,直角三角形 全等特有的条件:,HL.,包括直角三角形,不包括其它形状
2、的三角形,回顾知识点:,边边边:三边对应相等的两个三角形全等(可简写成“SSS”) 边角边:两边和它们的夹角对应相等两个三角形全等(可简写成“SAS”) 角边角:两角和它们的夹边对应相等的两个三角形全等(可简写成“ASA”) 角角边:两角和其中一角的对边对应相等的两个三角形全等(可简写成“AAS”) 斜边.直角边:斜边和一条直角边对应相等的两个直角三角形全等(可简写成“HL”),方法指引,证明两个三角形全等的基本思路:,(1)已知两边-,找第三边,(SSS),找夹角,(SAS),(2)已知一边一角-,已知一边和它的邻角,找是否有直角,(HL),已知一边和它的对角,找这边的另一个邻角(ASA),
3、找这个角的另一个边(SAS),找这边的对角 (AAS),找一角(AAS),已知角是直角,找一边(HL),(3)已知两角-,找两角的夹边(ASA),找夹边外的任意边(AAS),角的内部到角的两边的距离相等的点在角的平分线上。,用法: QDOA,QEOB,QDQE 点Q在AOB的平分线上,角的平分线上的点到角的两边的距离相等.,用法: QDOA,QEOB, 点Q在AOB的平分线上 QDQE,二.角的平分线: 1.角平分线的性质:,2.角平分线的判定:,总结提高,学习全等三角形应注意以下几个问题:,(1)要正确区分“对应边”与“对边”,“对应角”与 “对角”的不同含义;,(2)表示两个三角形全等时,
4、表示对应顶点的字母要写在对应的位置上;,(3)要记住“有三个角对应相等”或“有两边及其中一边的对角对应相等”的两个三角形不一定全等;,(4)时刻注意图形中的隐含条件,如 “公共角” 、“公共边”、“对顶角”,练习1:如图,AB=AD,CB=CD. 求证: AC 平分BAD,2、如图,D在AB上,E在AC上,AB=AC ,B=C, 试问AD=AE吗?为什么?,解: AD=AE,3、如图,OBAB,OCAC,垂足为B,C,OB=OC AO平分BAC吗?为什么?,答: AO平分BAC,4、如图,AC和BD相交于点O,OA=OC,OB=OD求证:DCAB,练习5: 如图,小明不慎将一块三角形模具打碎为
5、两块,他是否可以只带其中的一块碎片到商店去,就能配一块与原来一样的三角形模具呢?如果可以,带那块去合适?为什么?,AB=ED,AC=EF,BC=DF,DC=BF,7:已知 AC=DB, 1=2. 求证: A=D,8、如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。,ABFDEC,CBFFEC,ABCDEF,答:,9、如图,已知E在AB上,1=2, 3=4,那么AC等于AD吗?为什么?,解:AC=AD,10、已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD,变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六
6、十度),以上的结论还成立吗?,9、如图,已知E在AB上,1=2, 3=4,那么AC等于AD吗?为什么?,解:AC=AD,10、已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD,变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六十度),以上的结论还成立吗?,分析:由于两个三角形完全重合,故面积、周长相等。至于D,因为AD和BC是对应边,因此ADBC。C符合题意。,说明:本题的解题关键是要知道中两个全等三角形中,对应顶点定在对应的位置上,易错点是容易找错对应角 。,例题精析:,连接例题,例2 如图2,AECF,ADBC,ADCB, 求证:ADFCBE,分
7、析:已知ABC A1B1C1 ,相当于已知它们的对应边相等.在证明过程中,可根据需要,选取其中一部分相等关系.,例3已知:如图3,ABCA1B1C1,AD、A1D1分别是ABC和A1B1C1的高.求证:AD=A1D1,图3,例4:求证:有一条直角边和斜边上的高对应相等的两个直角三角形全等。,分析:首先要分清题设和结论,然后按要求画出图形,根据题意写出已知求证后,再写出证明过程。,说明:文字证明题的书写格式要标准。,如图:将纸片ABC沿DE折叠,点A落在点F处,已知1+2=100,则A= 度;,例5、如图6,已知:A90, AB=BD,EDBC于 D.求证:AEED,提示:找两个全等三角形,需连
8、结BE.,图6,例6、如图:AB=AC,BD=CD,若B=28 则C= ;,5、如图5,已知:AB=CD,AD=CB,O为AC任一点,过O作直线分别交AB、CD的延长线于F、E,求证:E=F.,提示:由条件易证ABCCDA 从而得知BACDCA ,即:ABCD.,第十三章 轴对称,小结与复习,把一个图形沿着一条直线折叠,如果直线两旁的部分能够完全重合,那么这个图形就叫做轴对称图形。这条直线就是它的对称轴。这时我们也说这个图形关于这条直线(成轴)对称。把一个图形沿着某一条直线折叠,如果它能与另一个图形完全重合,那么就说这两个图关于这条直线对称。这条直线叫做对称轴。折叠后重合的点是对应点,叫做_对
9、称点_.,一.轴对称图形,1、轴对称图形:,2、轴对称:,3、轴对称图形和轴对称的区别与联系,轴对称图形,轴对称,区别,联系,图形,(1)轴对称图形是指( )具 有特殊形状的图形,只对( ) 图形而言; (2)对称轴( ) 只有一条,(1)轴对称是指( )图形的位置关系,必须涉及( )图形; (2)只有( )对称轴.,如果把轴对称图形沿对称轴 分成两部分,那么这两个图形 就关于这条直线成轴对称.,如果把两个成轴对称的图形 拼在一起看成一个整体,那 么它就是一个轴对称图形.,一个,一个,不一定,两个,两个,一条,知识回顾:,4、轴对称的性质:,关于某直线对称的两个图形是全等形。 如果两个图形关于
10、某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。如果两个图形的对应点连线被同条直线垂直平分,那么这两个图形关于这条直线对称。,解:,3.,1、什么叫线段垂直平分线?,经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线,也叫中垂线。,2、线段垂直平分线有什么性质?,线段垂直平分线上的点与这条线段的两个端点的距离相等 (纯粹性)。,你能画图说明吗?,二.线段的垂直平分线,3.逆定理:与一条线段两个端点距离相等的点,在线段的垂直平分线上。(完备性),4.线段垂直平分线的集合定义:,线段垂直平分线可以看作是 与线段两
11、个端点距离相等的所 有点的集合。,三.用坐标表示轴对称小结: 在平面直角坐标系中,关于x轴对称的点横坐标相等,纵坐标互为相反数.关于y轴对称的点横坐标互为相反数,纵坐标相等.,点(x, y)关于x轴对称的点的坐标为_.点(x, y)关于y轴对称的点的坐标为_.,(x, y),( x, y),1、完成下表.,(-2, -3),(2, 3),(-1,-2),(1, 2),(6, -5),(-6, 5),(0, -1.6),(0,1.6),(-4,0),(4,0),2、已知点P(2a+b,-3a)与点P(8,b+2).若点p与点p关于x轴对称,则a=_ b=_.若点p与点p关于y轴对称,则a=_ b
12、=_.,练 习,2,4,6,-20,(抢答),思考:如图,分别作出点P,M,N关于直线x=1的对称点, 你能发现它们坐标之间分别有什么关系吗?,15,点(x, y)关于直线x=1对称的点的坐标为(2-x, y),类似: 若两点(x1,y1)、(x2,y2)关于直线y=n对称,则 ;,归纳:若两点(x1,y1)、(x2,y2)关于 直线x=m对称,则;,y1=y2,x1=x2,X2=2m-x1,y2=2n-y1,(m= ),(n= ),4.利用轴对称变换作图:,如图:要在燃气管道L上修建一个泵站,分别向A、B两镇供气,泵站修在管道什么地方,可使所用的输气管道线最短?,A,B,L,P,三.(等腰三
13、角形)知识点回顾,1.等腰三角形的性质 .等腰三角形的两个底角相等。(等边对等角) .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合。(三线合一) 2、等腰三角形的判定:如果一个三角形有两个角相等,那么这两个角所对的边也相等。(等角对等边),四.(等边三角形)知识点回顾,1.等边三角形的性质:等边三角形的三个角都相等,并且每一个角都等于600 。 2、等边三角形的判定:三个角都相等的三角形是等边三角形。有一个角是600的等腰三角形是等边三角形。 3.在直角三角形中,如果一个锐角等于300,那么它 所对的直角边等于斜边的一半。,1、如图,在ABC中,AB=AC时, (1)ADBC _=
14、 _;_=_ (2) AD是中线 _; _= _ (3) AD是角平分线 _ _;_=_,BAD,CAD,BD,CD,AD,BC,BAD,CAD,AD,BC,BD,CD,练习:,例 1:如图 1,AD 是ABC 的角平分线,BEAD 交 AD 的延长线于 E,EFAC 交 AB 于 F,求证:AFFB.,图 1,BEAE,BEFFEA90,ABEBAD90.ABEFEB,BFEF,AFFB.,证明:AE 平分BAC,BADCAD,EFAC,CADAEF.BADAEF,AFEF.,求证:BC AB.,例 2:试证明:在直角三角形中,如果一个锐角等于 30,,那么它所对的直角边等于斜边的一半,已知
15、:在ABC 中,C90,A30.如图 2.,图 2,1 2,证明:如图 3,作出ABC 关于 AC 对称的ABC.则 ABAB.CAB30,BBBAB60.ABBBAB.,图 3,又ACBB,,1如图 4,AD 是ABC 的边 BC 上的高,由下列条件中的某一个就能推出ABC 是等腰三角形的是_(把所有正,确答案的序号都填写在横线上)BADACD;BADCAD;ABBDACCD;ABBDACCD.,图 4,2某等腰三角形的两条边长分别为 3 cm 和 6 cm,则它的,周长为(,),C,A9 cmB12 cmC15 cmD12 cm 或 15 cm,3等腰三角形的一个角为 30,则底角为_,3
16、0或 75,DBCEAC A.,4已知:如图 5,ABAC,BDAC.,1 2,图 5,方法二:BDAC,DBC90C.ABAC,ABCC.,求证:,DBC,1,2,A,.,证明:方法一:作A 的平分线 AE 交 BC 于 E,ABAC,AEBC.CEAC90.BDAC,CDBC90.,5如图 6,在ABC 中,ABAC,在 AB 上取一点 E,在AC 延长线上取一点 F,使 BECF,EF 交 BC 于 G,EMCF.求证:EGFG.,图 6,BEMB,EBEM.又BECF,EMFC.,MEGCFG(AAS)EGFG.,证明:EMFC,EMBACB,MEGF.又ABAC,BACB.,6等腰三
17、角形一腰上的高与另一腰的夹角为 40,求等腰三角形底角的度数,当等腰三角形为钝角三角形时,如图 7(2),BACB,ACD40,BAC9040130.,BACB,1801302,25.,底角度数为 65或 25.,7如图 8,阴影部分是由 5 个小正方形组成的一个直角图形,请用两种方法分别在下图空白方格内涂黑两个小正方形,使它们成为轴对称图形,图 8,解:如图9.,图 9,8如图 10,已知四边形 ABCD,你能画出它关于 y 轴对称,的图形吗?它的对应顶点的坐标是怎样变化的?,图 10,解:能;如图 11,四边形 ABCD的四个顶点的坐,标分别为 A(0,5),B(2,0),C(4,3),D
18、(2,2),即对,应顶点的横坐标互为相反数,纵坐标相等,图 11,第十四章 整式与因式分解复习,本章知识导引,整式,整式的概念,单项式多项式,系数 次数 项 次数,整式的运算,整式乘法,互逆运算,整式除法,因式分解,概念 方法,同类项 合并同类项,整式加减,幂的运算 单项式乘单项式 单项式乘多项式 多项式乘多项式 乘法公式,提公因式法 公式珐,互逆变形,知识要点: 一、幂的4个运算性质,二、整式的乘、除,三、乘法公式,四、因式分解,幂的4个运算法则复习,考查知识点:(当m,n是正整数时) 1、同底数幂的乘法:am an = am+n 2、同底数幂的除法:am an = am-n ;a0=1(a
19、0) 3、幂的乘方: (am )n = amn 4、积的乘方: (ab)n = anbn,解此类题应注意明确法则及各自运算的特点,避免混淆,知识点一,例2 (2008年湖北荆门)计算:(-2x2)3=_ 本题中积的乘方运算是通过改变运算顺序进行的,即将各个因式的积的乘方转化为各个因式的乘方的积,前者先求积后乘方,后者则先乘方再求积例3 (2008年江苏徐州)计算:(-1)2009+0= 零指数的考查常常与实数的运算结合在一起,是易错点,-8x6,0,2.若10x=5,10y=4,求102x+3y-1 的值.,3.计算:0.251000(-2)2000,逆用幂的4个运算法则,注意点:,(1)指数
20、:加减,乘除,转化,(2)指数:乘法,幂的乘方,转化,(3)底数:不同底数,同底数,转化,1.(x-3)x+2=1,x+2=0,x=-2,原式=102x103y10=(10x)2(10y)310, 0.5(-2)2000=,a0=1(a0),知识点2 整式的乘除法 相关知识: 单项式乘以单项式, 单项式乘以多项式, 多项式乘以多项式, 单项式除以单项式, 多项式除以单项式 常见题型有填空题、选择题和计算与化简求值等低中档题,例(1)(2008年山西)计算:2x3(-3x)2=_(2)(2008年福建宁德)计算:6m3(-3m2)=_.单项式的乘除法中若有乘方、乘除法等混合运算,应按“先算乘方,
21、再算乘除法”的顺序进行在进行单项式的乘除法运算时,可先确定结果(积或商)的符号,再按法则进行计算,18x5,-2m,乘法公式复习,计算: (3x+4)(3x-4)-(2x+3)(3x-2) (1-x)(1+x)(1+x2)(1-x4) (x+4y-6z)(x-4y+6z) (x-2y+3z)2,平方差公式:(a+b)(a-b)=a2-b2完全平方公式: (a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2,三数和的平方公式: (a+b+c)2=a2+b2 +c2+2ab+2ac+2bc,知识点三,(3x+4)(3x-4)-(2x+3)(3x-2),=9x2-16-(6x2-4x+
22、9x-6) =9x2-16-6x2+4x-9x+6 =3x2-5x-10,=(1-x2)(1+x2)(1+x4) =(1-x4)(1+x4) =1-x8,(1-x)(1+x)(1+x2)(1-x4),(x+4y-6z)(x-4y+6z),=x+(4y-6z)x-(4y-6z) =x2-(4y-6z)2=x2-(16y2-48yz+36z2) =x2-16y2+48yz-36z2,(x-2y+3z)2,=(x-2y)+3z2 =(x-2y)2 +6z(x-2y)+9z2 =x2-4xy+4y2+6zx-12yz+9z2 =x2+4y2+9z2-4xy+6zx-12yz,三数和的平方公式: (a+
23、b+c)2=a2+b2 +c2+2ab+2ac+2bc,运用乘法公式进行简便计算,计算:(1)98102(2)2992 (3) 20062-20052007,(1)98102 =(100-2)(100+2) =1002-22 =9996,(2)2992 =(300-1)2 =3002-23001+1 =90401,(3) 20062-20052007,=20062-(2006-1)(2006+1) =20062-(20062-12) =20062-20062 +1 =1,活用乘法公式求代数式的值,1 、已知a+b=5 ,ab= -2,求(1) a2+b2 (2)a-b,a2+b2=(a+b)2
24、-2ab,(a-b)2=(a+b)2-4ab,2、已知a2-3a+1=0,求(1) (2),3、已知 求x2-2x-3的值,1、因式分解意义:,因式分解问题归纳小结,和,积,2、因式分解方法:,一提,二套,三看,二项式:,套平方差,三项式:,套完全平方与十相乘法,看:,看是否分解完,3、因式分解应用:,提:,提公因式,提负号,套,知识点四,因式分解复习,1.从左到右变形是因式分解正确的是( ) A.x2-8=(x+3)(x-3)+1 B.(x+2y)2=x2+4xy+4y2 C.y2(x-5)-y(5-x)=(x-5)(y2+y) D.,D,2.下列各式是完全平方式的有( ) ,A, B. C
25、. D.,D,1,+,因式分解复习,把下列各式分解因式: 1. x 5 - 16x 2. 4a 2+4ab- b 2,3. m 2(m- 2) - 4m(2- m) 4. 4a 2- 16(a - 2) 2,(1)提公因式法 (2)套用公式法,二项式:平方差,三项式:完全平方,1、多项式x2-4x+4、x2-4的公因式是_,2、已知x2-2mx+16 是完全平方式,则m=_,5、如果(2a+2b+1)(2a+2b-1)=63,那么a+b=_,3、已知x2-8x+m是完全平方式,则m=_,4、已知x2-8x+m2是完全平方式,则m=_,x-2,4,16,4,4,-mx,8,6、如果(a2 +b2
26、 )(a2 +b2 -1)=20,那么a2 +b2 =_,5,-4(不合题意),运用因式分解进行简便计算,1、计算(-2)2008+(-2)2009,2、计算:,3、计算: 2005+20052-20062,4、计算: 3992+399,找规律问题,观察:,请你用正整数n的等式表示你发现的规律 .,正整数n,找规律问题,观察下列各组数,请用字母表示它们的规律,n是正整数,找规律问题,观察下列各组数,请用字母表示它们的规律,n是正整数,设 (n为大于0的自然数). (1) 探究an 是否为8的倍数,并用文字语言表述你所获得的结论; (2) 若一个数的算术平方根是一个自然数,则称这个数是“完全平方
27、数”. 试找出a1 ,a2 ,a n,这一列数中从小到大排列的前4个完全平方数,并指出当n满足什么条件时,an 为完全平方数(不必说明理由) .,两个连续奇数的平方差是8的倍数,前4个完全平方数为16、64、144、256,n为一个完全平方数的2倍,an是一个完全平方数,1、如图:在ABC中,C =900,AD平分 BAC,DEAB交AB于E,BC=30,BD:CD=3:2,则DE= 。,12,c,A,B,D,E,全等三角形机动练习:,4.已知,ABC和ECD都是等边三角形,且点B,C,D在一条直线上求证:BE=AD,变式:以上条件不变,将ABC绕点C旋转一定角度(大于零度而小于六十度),以上
28、的结论海成立吗?,5.如图,已知E在AB上,1=2, 3=4,那么AC等于AD吗?为什么?,解:AC=AD,6.如图,已知,ABDE,AB=DE,AF=DC。请问图中有那几对全等三角形?请任选一对给予证明。,答:,ABCDEF,证明:,7.如图,已知,EGAF,请你从下面三个条件中,再选出两个作为已知条件,另一个作为结论,推出一个正确的命题。(只写出一种情况)AB=AC DE=DF BE=CF 已知: EGAF 求证:,高,拓展题,9.如图,已知ACBD,EA、EB分别平分CAB和DBA,CD过点E,则AB与AC+BD相等吗?请说明理由。,要证明两条线段的和与一条线段相等时常用的两种方法: 1
29、、可在长线段上截取与两条线段中一条相等的一段,然后证明剩余的线段与另一条线段相等。(割) 2、把一个三角形移到另一位置,使两线段补成一条线段,再证明它与长线段相等。(补),11.如图,在RABC中,ACB=450,BAC=900,AB=AC,点D是AB的中点,AFCD于H交BC于F,BEAC交AF的延长线于E,求证:BC垂直且平分DE.,12.已知:如图:在ABC中,BE、CF分别是AC、AB两边上的高,在BE上截取BD=AC,在CF的延长线上截取CG=AB,连结AD、AG。 求证: ADG 为等腰直角三角形。,13.已知:如图21,ADBAC,DEAB于E,DFAC于F,DB=DC, 求证:EB=FC,