收藏 分享(赏)

江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt

上传人:梦中客 文档编号:1736641 上传时间:2018-08-21 格式:PPT 页数:14 大小:492.50KB
下载 相关 举报
江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt_第1页
第1页 / 共14页
江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt_第2页
第2页 / 共14页
江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt_第3页
第3页 / 共14页
江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt_第4页
第4页 / 共14页
江西专用2018中考数学总复习基础知识梳理第1单元数与式1.2整式课件.ppt_第5页
第5页 / 共14页
点击查看更多>>
资源描述

1、第一单元 数与式,第2课时 整式,考纲考点,1.能分析简单问题的数量关系,并且用代数表示.能解释一些简单代 数式的实际背景或几何意义. 2.会求代数式的值;理解整式的概念. 3.会进行简单的整式加、减、乘、除运算(其中多项式相乘仅指一 次式之间以及一次式与二次式相乘). 4.能用公式(a+b)(b-a)=a2-b2,(ab)2=a22ab+b2进行简单的计算.,考情分析,知识体系图,要点梳理,1.2.1 整式的概念,1.整式:单项式和多项式统称为整式. 2.单项式:数或字母的积的式子叫作单项式;单独的一个数或一个 字母也是单项式. 单项式的系数:单项式中的数字因数叫作单项式的系数; 单项式的次

2、数:一个单项式中,所有字母的指数和叫做这个单项 式的次数. 3.多项式:几个单项式的和叫做多项式. 多项式的次数:一个多项式中,次数最高项的次数叫做这个多项 式的次数. 4.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同 类项;几个常数项也是同类项.,要点梳理,1.2.2 整式的加减运算,1.合并同类项:把多项式中的同类项合并成一项,叫做合并同类项, 合并同类项所得项的系数是合并前各同类项的系数的和且字母部分 不变. 2.整式的加减:一般地,几个整式相加减,如果有括号就先去括号, 然后再合并同类项.,要点梳理,1.2.3 幂的运算法则,1.同底数幂乘法:同底数幂相乘,底数不变,指数相

3、加,即 aman=am+n(m,n都是整数). 2.幂的乘方:幂的乘方,底数不变,指数相乘,即(am)n=amn(m,n 都是整数). 3.积的乘方:积的乘方等于把积的每一个因式分别乘方,再把乘方 的幂相乘,即(ab)n=anbn(n为整数). 4.同底数幂除法:同底数幂相除,底数不变,指数相减,即 aman=am-n(m,n都为整数).,要点梳理,1.2.4 整式的乘除法,1.单项式与单项式相乘:把相同字母部分的指数相加,对于只在一 个单项式里含有的字母,则连同它的指数作为积的一个因式. 2.单项式与多项式相乘:用单项式乘多项式的每一项,再把所得的 积相加,即:m(a+b+c)=ma+mb+

4、mc. 3.多项式与多项式相乘:先用一个多项式里的每一项乘另一个多项 式的每一项,再把所得的积相加,即(m+n)(a+b)=ma+mb+na+nb. 4.单项式的除法:把系数与同底数幂分别相除作为商的因式,对于 只在被除式里含有的字母,则连同它的指数作为上的一个因式. 5.多项式除以单项式:先把这个多项式的每一项除以这个单项式, 再把所得的商相加,即:(ma+mb+mc)m=a+b+c.,要点梳理,1.2.5 乘法公式,平方差公式:(a+b)(a-b)=a2-b2. 完全平方公式:(ab)2=a22ab=b2. 恒等变换:a2+b2=(a+b)2+(-2ab)=(a-b)2+2ab.(a-b)

5、2=(a+b)2+(-4ab).,要点梳理,【例1】(2017年丽水)计算aa的结果是 ( ) Aa5 B a6 C a8 D a9【解析】解:aa=a2+3=a5 . 【答案】A,经典考题,【例2】下列计算正确的是 ( ) A a2a3a6 B (2ab)24a2b2 C (a2)3a5 D 3a3b2a2b23ab【解析】本题考查整式的运算包括幂的乘法运算、幂的乘方、整式的除法 运算,根据其运算法则计算即可Aa2a3a5,故错误;B正确;C(a2)3 a6,故错误;D3a3b2a2b23a,故错误 【答案】B,经典考题,【例3】(2017年济宁汶上县一模)多项式1+2xy-3xy2的次数为

6、 ( )A. 1 B. 2 C. 3 D. 5【解析】解:多项式1+2xy-3xy2的次数为3. 【答案】C,经典考题,【例4】先化简,再求值:(x+3)(x-3)-x(x-2),其中x=4. 【解析】此题考查了整式的运算,以及化简求值.涉及了平方差公式、单项式与多项式相乘以及合并同类项的知识,来化解该整式.将整式化简到最简单的表达方式,再代数求值.解:原式=x2-9-x2+2x=2x-9.当x=4时,原式=24-9=-1.,经典考题,【例5】已知x2+x-5=0,求代数式(x-1)2-x(x-3)+(x+2)(x-2) 的值. 【解析】此题考查整式的运算,运用到了完全平方公式,平方差公式,单项 式与多项式相乘以及合并同类项等,考查比较全面.注意,此题应先化简所求 整式,而不是直接去根据x2+x-5=0求x的值.解:原式=x2-2x+1-x2+3x+x2-4=x2+x-3.由题可知,x2+x-5=0,x2+x=3.原式=5-3=2.,经典考题,THANK YOU!,

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报