1、道路与铁道工程专业毕业论文 精品论文 桥梁结构分析的广义变分原理Daubechies 条件小波法研究关键词:Daubechies 小波 广义变分原理 条件小波法 桥梁结构 有限元法摘要:小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程
2、中的应用还很不完善,尤其是Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和 Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件
3、小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有
4、限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Gal
5、erkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编
6、制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。正文内容小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近
7、年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和 Galerkin法为主要手段,将小波分析的多分辨思想
8、与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元
9、内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精
10、度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精
11、度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的
12、小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 R
13、itz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechie
14、s小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波
15、总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Dau
16、bechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中
17、,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechi
18、es小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出
19、了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和
20、条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基
21、础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechie
22、s小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究
23、小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联
24、系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基
25、于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本
26、文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应
27、用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独
28、特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubec
29、hies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出
30、了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典
31、型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个
32、新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechi
33、es小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理
34、论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结
35、合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯
36、度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应
37、用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面
38、遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展
39、现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分
40、析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对
41、条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续
42、进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daubechies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、
43、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galerkin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚
44、度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元
45、难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度下降且计算结果不易收敛的问题,提升了小波 Ritz法和小波 Galerkin法的求解精度,使小波分析的“显微”特性得以充分发挥,并为应力大梯度问题和工程奇异问题的有
46、效求解提供了强有力的计算手段。同时,编制典型算例,从各个方面对条件小波分析方法在计算精度、稳定性、求解速度以及在处理应力大梯度等奇异问题上的有效性进行全面测试。 桥梁桩基础是桥梁工程中典型构件,其内力计算的准确与否将直接关系到整个桥梁结构的安全。本文针对桥梁桩基础计算模型的特点,首次提出并推导了一类可用于桩基础计算的联系系数,同时首次将二类变量的混合能量原理引入 Daubechies小波小波有限元法中,以进一步提高结构内力的求解精度。最后,利用上述结果,对桥梁桩基础的典型模型进行了计算。 本文还编制了大量的数值计算子程序和计算例程,几乎囊括了 Daubechies小波有关结构工程数值计算的所有
47、方面,这些程序的编制,不仅验证了本文的相关结论,同时,也为后续进一步拓展 Daubechies小波在结构工程数值计算领域的应用空间打下坚实的基础。小波理论是 20世纪 80年代出现的一个新兴数学分支,是近年来在工具及方法上的重大突破,它已被广泛地应用在科学技术和工程计算等各个领域。其中,以 Daubechies小波使用最广,影响最为深远,在解决诸如应力大梯度等奇异问题中,较其它小波函数有明显的优势。基于 Daubechies小波的小波 Ritz法、小波 Galerkin法以及小波有限元法近年来一直受到国内外学者的高度重视。但直到目前为止,小波理论在结构工程中的应用还很不完善,尤其是 Daube
48、chies小波在诸如联系系数的计算精度不高、位移转换矩阵奇异、高阶消失矩基函数无法使用以及高精度小尺度函数空间难以应用等方面遇到很大困难。因此,如何应用小波理论,特别是 Daubechies小波进行结构工程计算,提高计算精度,克服上述缺陷,发挥其独特的优势,具有重要的理论意义和显著的实用价值。 本文在系统研究小波数值计算方法及已有小波有限元的基础上,以 Daubechies小波为切入点,以桥梁结构工程计算为主要应用方向,以传统 Ritz法和Galerkin法为主要手段,将小波分析的多分辨思想与条件变分原理相结合,成功构造出可直接用于工程结构分析的全求解域条件小波 Ritz法和条件小波Galer
49、kin法,并进一步构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法。 本论文首先简要介绍了小波理论的发展现状及其在数值计算领域的应用情况,并系统介绍了小波分析的基础理论及 Daubechies小波的数学特性,推导了 Daubechies小波尺度函数、小波函数及其相关导数、积分、内积和现有联系系数的计算过程,阐明了现有联系系数计算方法中存在的问题,提出了提高联系系数计算精度的有效方法。 现有的 Daubechies小波有限元法中,为方便边界条件的引入,均在小波待定系数与单元内部节点位置之间设置了位移转换矩阵,从而将小波有限元问题转化为常规有限元问题,方便了小波单元的使用。但也正是由于位移转换矩阵的存在,使得 Daubechies小波单元难以实现高精度计算,在结构工程计算方面的应用受到限制。本文在分析传统 Daubechies小波有限元法所存在问题的基础上,结合传统 Ritz法、Galerkin法和广义变分原理,首次提出了条件小波 Ritz法和条件小波Galerkin法,并构造出基于条件变分和二类变量广义变分的单元刚度矩阵的条件小波有限元法和条件小波混合有限元法,构建出条件小波单元求解矩阵,给出条件小波总体刚度求解矩阵的组装方法。从而避免了由于转换矩阵奇异而造成精度