1、1 7.1 探索直线平行的条件(1)教学目标:1引导学生探索、理解、掌握直线平行的条件同位角相等,并能在数学图形及实际生活中正确识别平行线;2经历探索两直线平行的条件的活动过程,提高对图形的认识、分析能力;体会说理的必要性,会进行简单的说理根据图形中的已知条件,通过简单说理或推理,得出欲求结果教学重点: 理解平行线的识别方法同位角相等,两直线平行教学难点:会进行简单的说理教学过程(教师)新课引入情景导入:如图 1 为一块左、右两边已破损的板材,你能判断它的边 AB、CD 是否平行吗?提问:如图 2,你会过直线 l外一点 P 画已知直线 l 的平行线吗?DCBA(图 1)lP(图 2)2 实践探
2、索:通过利用“几何画板”软件制作的课件的动画演示初步得出“两直线被第三条直线所截,如果同位角相等,那么这两条直线平行 ”(结合图形,直接给出同位角的概念)实践探索:通过课件的动画演示(并通过作图工具的变式使学生意识到所使用的三角板中的角度并非一定要是 45、30、60、90等特殊角度,而可以是任意角度)引导学生得出当具备条件“同位角相等”时,就有结论“两直线平行”成立(如图 3) ,而且条件“同位角相等”不成立时,不能得出结论“两直线平行” (如图 4) 例题:如图 5,1C,12,请找出图中互相平行的直线,并说明理由21PEFA BDC(图 3)21PEFA BDC(图 4)BDCA(图 5
3、)123 练习:如图 6,已知B62则:再增加条件_,就能使 ABCD 当增加条件“2 的对顶角等于 118”时,ABCD 是否成立?为什么?能力检测:运用本节课所学数学知识解决前面提及的生活中的实际问题判断一块左、右两边已破损的板材的边 AB、CD 是否平行(课件呈 现题目,留足学生思考与交流的时间) 小结:通过今天的学习,你学会了什么?你会正确运用吗?通过这节课的学习,你有什么感受呢,说出来告诉大家21 3E DCBA(图 6)DCBA(图 7)4 课后作业:1课本 P11 习题 7.1 第 2、3、4 题;2思考题(选做):已知:如图 9,12,34问:(1)AB 与 CD 平行吗?(2
4、)EG 与 FH 平行吗?为什么? 1423HGNMFEDCBA(图 9)5 7.1 探索直线平行的条件(2)教学目标:1能识别内错角、同旁内角;2经历探索直线平行的条件的过程,掌握直线平行的条件,并能解决一些实际问题;3经历观察、操作、想象、推理、交流等活动进一步发展空间观念、推理能力和有条理的进行表达的能力,体会利用数学转化思想,获得数学结论的过程教学重点:理解平行线的识别方法内错角相等,两直线平行;同旁内角互补,两直线平行教学难点:直线平行条件的应用教学过程(教师)新课引入情景导入:如图在一块小木板上面画一条线段 AB,你能通过测量图中哪些角的大小来判断木板的上、下边缘是否平行?“议一议
5、”:1如图 1,直线 a、b 被直线 c 所截,23直线 a 与直线 b 平行吗?试说明理由2如图 2,直线 a、b 被直线 c 所截,23180直线 a 与直线 b 平行吗?试说明理由引导学生观察上面两图中的2 与3 的位置特征得出内错角和同旁内角的概念,总结出结构特征 实践探索:通过利用“几何画板”软件制作的课件的动画演示初步得出“两直线被第三条直线所截,如果内错角相等或同旁内角互补,那么这两条直线平行 ”BA图 1 图 26 例题:如图,12,BBDE180,请指出图中互相平行的直线,并说明理由练习:1当图中各角满足下列条件时,你能指出哪两条直线平行吗?并简单说明理由 (1)14; (2
6、)24; (3)13180 2如图,已知 ABBC,CDBC, ,BE 与 CF 平行吗?217 能力检测:如图,三个相同的三角尺拼成一个图形,请找出图中的一组平行线段,并说明你的理由小结:通过今天的学习,你学会了什么?你如何判定两直线平行?请你画图并用符号和文字说明通过这节课的学习,你还有什么收获,或有什么疑问呢,说出来告诉大家课后作业:1课本 P11 习题 7.1 第 5、6 题;2思考题(选做):如图,B 与BCD 互为余角,BACD,DEBC,垂足为E,AC 与 DE 平行吗?7.2 探索平行线的性质(1)8 教学目标:1引导学生探索、理解、掌握平行线的性质,并能运用平行线的性质进行简
7、单的说理、计算;2经历探索平行线性质的活动过程,提高对图形的认识、分析能力;发展空间观念、有条理的思考和表达能力 根据图形中的已知条件,通过简单说理或推理,得出欲求结果教学重点:对平行线性质的掌握与应用教学难点:对平行线性质 1 的探究教学过程(教师)创设情境,设疑激思引入新课:如图,工人在修一条高速公路时前方遇到一座高山,为了降低施工难度,工程师决定绕过这座山,如果第一个弯左拐 30,那么第二个弯朝哪个方向才能不改变原来的方向?9 提问:根据同位角相等可以判定两条直线平行,反过来,如果两条直线平行,同位角之间有什么关系呢?探究新知 实验猜想:作出两条平行直线 a、b 被第三条直线 c 所截,
8、标出1、2,能借助你所画的图想办法解决如果两条直线平行,同位角有怎样的数量关系?实践探索:通过课件的动画演示,当 a 与 b 不平行时,1 与2 的度数是否相等引导学生当条件“两直线不平行”时,结论“同位角相等”不成立10 例题 1:如图,已知 ABEF ,DEBC.那么图中ADE 与EFC 相等吗?为什么?例题 2:如图,1 与2 互为补角,3117 o.求4 的度数练习:如图,B、C、D 三点在一条直线上,A75, 155,275,求B 的度数HGFEDC BA 5432111 能力检测:运用本节课所学数学知识解决前面提及的生活中的实际问题如图,工人在修一条高速公路时前方遇到一座高山,为了
9、降低施工难度,工程师决定绕过这座山,如果第一个弯左拐 30,那么第二个弯朝哪个方向才能不改变原来的方向?小结:1知道两直线平行,你能得到哪些结论?2平行线的性质与识别之间有何关系?3在运用性质和判定回答问题时应注意什么?4通过这节课的学习,你还有什么收获?有什么困惑?课后作业:1课本 P15 练一练第 1、2 题;2思考题(选做):已知:如图,ABCD,12,则 GP 与 QH 的位置关系是什么?并说明理由12 7.1 探索平行线的性质(2)教学目标:1了解平行线的性质,并能运用它进行简单的运算和证明,能够运用“两直线平行,同位角相等”这一基本事实证明平行线的性质(两直线平行,内错角相等;两直
10、线平行,同旁内角互补) ;2掌握相关图形语言、文字语言、符号语言及其互换;3在定理的探索中锻炼观察能力,并尝试与他人合作开展讨论、研究,并表达自己的见解;4在观察实验猜想证明的过程中体验探索的方法,逐步形成严谨的思维品质教学重点:探究平行线的性质教学难点:平行线的性质与判定的区别与联系教学过程(教师)情境导入:小明沿正北方向走到 A 点,向左转 50 行进到 B 点,为了保证继续行进的方向与开始时平行,小明应向哪个方向转多少度? 复习提问:(1) 判定两直线平行的方法有哪些?怎样用符号语言表述?(2) 若两直线平行,那么同位角有什么关系呢?13 新课引入:既然同学们知道两条平行线被第三条直线所
11、截,同位角相等,那么两条平行线被第三条直线所截,内错角、同旁内角各有什么关系呢?直观感受:利用“几何画板”制作的课件的动画演示初步得出“两直线平行,同位角相等” “两直线平行,同旁内角互补”.实践探索:请你根据“两直线平行,同位角相等”说明“两直线平行,内错角相等”.学生互动交流:请你根据“两直线平行,同位角相等”说明“两直线平行,同旁内角互补”. 应用新知:例 1 如图是梯形上底的一部分,已经量得A 115,D 100,梯形另外两个角各是多少度?14 例 2 如图,ADBC,AC试说明 ABCD 例 3 如图,已知 ABCD,1110,你能求出2、3、4 的度数吗?对比平行线的判定和性质:
12、从角的相等或互补关系得到两直线平行是平行线的判定;反过来,由直线的平行得到角的相等或互补关系,是平行线的性质. 例 4 如图,在ABC 中,(1)若BDE 120, B 60.请说明 DEBC(2)若 DEBC,且C40.求CED 的度数4 321ACB DEEDCBA15 巩固练习:1如图,AB、CD 被 EF 所截,AB CD . 按要求填空:若1120,则2( ) ;3 1 ( )2如图,已知 ABCD,ADBC填空: (1) ABCD (已知) , 1 ( ) ;(2) ADBC (已知) 2 ( ) 3如图,已知 ABCD,ADBC判断1 与2 是否相等,并说明理由16 小结:1平行
13、线的性质的条件是什么?有哪些结论?2平行线的性质与平行线的判定有何区别与联系?3你能用三种语言表示平行线的性质与判定吗?4判定角相等的方法有哪些?课后作业:1课本 P16-17 习题 7.2 第 2、3、4、5 题;2思考题(选做) 已知:如图12,AC,说明:AEBC7.3 图形的平移17 教学目标:1认识平移的概念及平移的不变性,理解平移图形中对应线段平行且相等的性质;2能按要求作出简单平面图形平移后的图形,能用平移的性质解决实际问题教学重点: 理解图形平移的基本性质,并能按要求作出简单平面图形平移后的图形教学难点:能运用平移的性质解决实际问题教学过程(教师)新课引入情景导入:请你判断 小
14、明跟着妈妈乘观光电梯上楼,一会儿,小明兴奋地大叫起来:“妈妈!妈妈!你看我长高 了!我比对面的大楼还要高!”小明说的对吗?为什么? 接触平移现象:教师通过多媒体展示(画面)现实生活中平移的具体实例,你还能举出生活中类似的例子吗?根据上述一些现象,你能说明什么样的图形运动称为平移?18 辨一辨、议一议:在以下现象中,属于平移的是 ( ) 在荡秋千的小朋友; 打气筒打气时,活塞的运动; 钟摆的摆动; 传送带上,瓶装饮料的移动A B C D例 1 如图,4 个小三角形都是等边三角形,边长为 1.3cm你能通过平移ABC 得到其他三角形吗?若能,请画出平移方向,并说出平移的距离活动探究:把图中的三角形
15、 ABC(可记为ABC)向右平移 6 个格子,画出所得的A BC度量ABC 与AB C的边、角的大小,你发现什么了呢?你认为图形平移具有什么特征呢?FEDCBACBA19 例 2 将 A 图案剪成若干小块,再分别平移后能够得到 B、C、D 中的 ( )A0 个 B1 个 C2 个 D3 个做一做:在所示的方格纸上,将线段 AB 向左平移 4 格得到线段 AB,再将线段 AB向上平移 3 格,得到线段 AB,连接对应点的线段 AA与 BB,A A与 BB,AA与BB在连接对应点的线段 AA与BB,A A与 BB,AA与 BB的过程中,你有什么发现?议一议:(1)下图中的四边形 ABCD是怎样由四
16、边形 ABCD 平移得到的;(2)线段 AA、BB 、CC、DD之间有什么关系?(3)取线段 AD 的中点 M,画出点 M 平移后对应的点 M,连接MM线段 MM与线段 AA有什么关系?你能否用一句话来概括这种关系?BAA BD CDCBA20 例 3 已知ABC 和点 D,平移ABC,使ABC 的顶点 A 移动到了点 D 的位置课堂反馈:1在下面的六幅图案中, (2) 、 (3) 、 (4) 、 (5) 、 (6)中的哪个图案可以通过平移图案(1)得到?2如图,四边形 EFGH 是由四边形 ABCD 平移得到的, 已知AD5 ,B70,则 ( )AFG 5,G70BEH5,F70CEF5,F
17、70DEF5, E703楼梯的高度 3 米,水平宽度 8 米,现要在楼梯的表面铺地毯,地毯每米 16 元,求购买地毯至少需花多少钱?4如图,将ABC 沿着从 A 到 D 的方向平移后得到DEF,若 AB4cm ,BE3cm,CE1cmDCBAHGFEDCBA8m3m21 (1)指出平移的距离是多少?(2)求线段 BF 的长5平移方格纸中的图形(如图所示) ,使 A 点平移到 A点处,画出平移后的图形,并写上一句贴切、诙谐的解说词课堂小结:本节课你的收获是什么?课后作业:1课本 P21 习题 7.3 第 1、2、3 题2 (选做题)如图所示,一块蓝色正方形板,边长 18cm,上面横竖各两道红条,
18、红条宽都是 2cm,问蓝色部分面积是多少?FEDCBA22 7.4 认识三角形(1)教学目标:1进一步认识三角形的概念及其基本要素,会按照边长、角的大小对三角形进行分类,掌握三角形三边的关系;2通过实验、操作、讨论等活动,进一步发展空间观念,逐步形成动手实践能力和数学语言表达能力教学重点: 三角形的相关概念,三角形三边关系的探究和归纳教学难点: 三角形三边关系的应用教学过程(教师)新课引入情景导入:播放“自行车” “金字塔”等含有三角形的图片请同学们从图片中找出熟悉的几何图形,举出生活中常见的三角形 活动 1从播放的图片中抽象出的三角形有什么共同的特点呢?能否利用身边的笔摆一个三角形(黑板上画
19、出一个三角形)?活动 2投影出一个含有多个三角形的图片,要求学生从中找出不同的三角形怎样表示三角形的三个顶点、三条边、三个内角呢?怎样表示三角形呢?(利用黑板上三角形标上字母,用符号表示出来) 活动 3把含有多个三角形的图片中三角形抽取出来,分清哪些三角形是锐角三角形、直角三角形、钝角三角形?并将三角形的序号填入相关的椭圆框内介绍等腰三角形的概念 23 活动 41从准备好的长度分别为 3cm、4cm、5cm 、6cm 、和 9cm 的小木棒中任意取 3 根,能否搭成一个三角形?2小明说我上学走中间这条路最近,你知道这是什么原因吗?例题:1.图中共有几个三角形?把它们分别表示出来,并用量角器检验
20、它们是锐角三角形、直角三角形,还是钝角三角形2.下列每组数分别是三根小棒的长度,用它们能摆成三角形吗? 3cm、 4cm、 5cm ( ) 8cm、 7cm、 15cm ( ) 5cm、 5cm、 11cm ( )3. 现有五根长度分别为 3cm,4cm,5cm , 6cm,9cm的小木棍,从中任意取 3 根,能搭成多少个不同的三角形?24 练习:1. 有两根长度分别为 4cm 和 7cm 的木棒,(1)再取一根长度为 2cm 的木棒,它们能摆成三角形吗?为什么?(2)如果取一根长度为 11cm 的木棒呢?(3)你能取一根木棒,与原来的两根木棒摆成三角形吗?2被公认为目前“世界第一高人”的土耳
21、其公民苏坦科森身高 2.51米,若他的腿长为 1.3 米,他一步(两脚着地时两脚的间距)能迈 3 米多?你相信吗?小结:1三角形如何表示?2三角形三边有何关系?根据是什么?3如何判定三条线段能否是同一个三角形的三条边?通过今天的学习,你还有什么困惑?课后作业:1课本 26 页习题 7.4 第 2、4 题;2思考题(选做):如 图 , 方 格 中 的 点 A、 B、 C、 D、 E 称 为 “格 点 ”, 以这 5 个格点中的任意 3 点为顶点,一共可以画多少个三角形?其中,哪些是直角三角形、钝角三角形、锐角三角形?哪些是等腰三角形?25 7.4 认识三角形(2)教学目标:1通过操作观察,理解“
22、三角形的中线” 、 “三角形的角平分线”和“三角形的高”的概念;并会正确画出任意一个三角形的中线、角平分线和高2通过学习活动,提高动手操作能力、观察能力和识图能力教学重点: 三角形的中线、角平分线和高的概念及其画法教学难点:钝角三角形的高的画法;引导学生“从较复杂的图形中分解出简单图形”的思考过程教学过程(教师)情景创设:利用“几何画板”软件制作的教学课件演示:将橡皮筋的一端固定在ABC 的顶点 A 上,另一端从点 B 出发沿 BC方向移动,在这个过程中,橡皮筋(线段)的位置不断变化,你认为其中有哪些位置是特殊的?请与同学交流26 新课探究:1三角形的中线如图,取ABC 边 BC 的中点 D,
23、连结 AD,线段 AD 就是ABC 的一条中线;也称 AD 为边 BC 上的中线DABC在三角形中,连接一个顶点与它对边中点的线段,叫做三角形的中线强调:三角形的中线是一条线段;为了区分中线,我们将线段 AD叫做 BC 边上的中线思考:(1)AD 是ABC 中 BC 边上的中线,则 BD_CD BC(填“” 、12“”或“” )(2)若 BDCD,则 AD 是_(3)ABD 与ACD 的面积之间有什么关系?2三角形的角平分线如图,线段 AE 平分BAC 交边 BC 于点 E,我们把线段 AE 叫做ABC中BAC 的角平分线 EABC在三角形中,一个内角的平分线与它的对边相交,这个角的顶点与交点
24、之间的线段叫做三角形的角平分线27 感悟:三角形的一个内角的平分线一定与它的对边相交三角形的角平分线是一条线段而不是射线,它与一个角的平分线不同几何语言:AE 是ABC 中BAC 的角平分线, BAEC12BA提问:(1)用折纸的方法折出三角形的三个角的平分线,你有什么发现?(2)利用量角器和直尺画出ABC 中的角平分线(3)在每个三角形中,三条角平分线之间有什么特点?将你的结果与同伴进行交流3三角形的高在三角形中,从一个顶点向它的对边所在直线作垂线,顶点与垂足之间的线段叫做三角形的高线,简称三角形的高 FABC如图,线段 AF 垂直 BC,垂足为 F,我们把线段 AF 叫做ABC 中 BC边
25、上的高注意:三角形的高是一条线段,是连接三角形的顶点和相应垂足的一条线段;不要忘记标上垂足和垂直符号提问:(1)三角形的 3 条高有交点吗?若有,交点在哪里?所在直线呢?(2)锐角三角形 3 条高的交点在哪里?28 BAEDC(3)直角三角形 3 条高的交点在哪里?(4)钝角三角形的 3 条高有无交点?所在直线呢?实践探索:问题 1 如图,在ABC 中,E 是 AC 的中点,A 的平分线分别交BE、BC 于点 F、D指出图中哪条线段是哪个三角形的角平分线,哪条线段是哪个三角形的中线问题 2 如图,在ABC 中,C ,点 D 在 BC 上, ,垂09B足为 E指出图中哪条线段是哪个三角形的高小结
26、:通过今天的学习,你知道什么是三角形的中线、角平分线和高?通过画图,你发现三角形的中线、角平分线、高各有怎样的特征?通过这节课的学习,你能感悟“从复杂的图形中分解出简单的图形”的思考过程吗?谈谈你的收获课后作业:1课本 P27 习题 7.4 第 5、6 题;2思考题(选做):如图,AF、AD 分别是ABC 的高和角平分线,且B36 ,C66,求DAF 的度数FDEAB29 7.5 多边形的内角和与外角和(1)30 教学目标:1探索并了解“三角形三个内角之和等于 180”;2经历举例、操作(画图、度量、拼图) 、观察、归纳、说理、交流等数学活动,提升学生有条理的表达能力教学重点: 探索并掌握“三
27、角形三个内角之和等于 180”教学难点:理解用推理的方法说明为什么三角形的三个内角之和一定等于 180教学过程(教师)新课引入问题导入:(1)同学们,小学里我们就已经知道了三角形的三个内角的和等于多少度?(2)你能举例说明三角形的三个内角的和等于 180吗?探究一画图、度量、计算请每位同学在课堂笔记本上任意画一个三角形,用量角器量出各内角的度数,并求它们的和探究二观察利用几何画板中的课件动画演示(通过拖动三角形的顶点改变三角形的内角) ,再次验证“三角形三个内角之和等于 180”探究三拼图(1)问:还记得小学里怎么说明“三角形三个内角之和等于 180”的吗?(2)请每位同学将课前发下的三角形纸片的 3 个内角(如图 1)剪开,然后拼在一起,观察它们的和是否为 180 AB C (图 1)