收藏 分享(赏)

2018年中考数学专题复习卷:整式(含解析).doc

上传人:梦中客 文档编号:1667375 上传时间:2018-08-16 格式:DOC 页数:9 大小:172.50KB
下载 相关 举报
2018年中考数学专题复习卷:整式(含解析).doc_第1页
第1页 / 共9页
2018年中考数学专题复习卷:整式(含解析).doc_第2页
第2页 / 共9页
2018年中考数学专题复习卷:整式(含解析).doc_第3页
第3页 / 共9页
2018年中考数学专题复习卷:整式(含解析).doc_第4页
第4页 / 共9页
2018年中考数学专题复习卷:整式(含解析).doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、整式一、选择题1.下列运算中,正确的是( ) A.x3+x3=x6 B.x3x9=x27 C.(x2)3=x5 D.x x2=x12.计算 结果正确的是( ) A. B. C. D. 3.下列各式能用平方差公式计算的是( ) A. B. C. D. 4.计算(a-3) 2的结果是( ) A. a2+9 B. a2+6a+9 C. a2-6a+9 D. a2-95.如图,4 块完全相同的长方形围成一个正方形. 图中阴影部分的面积可以用不同的代数式进行表示,由此能验证的等式是( )A. B. C. D. 6.下列四个式子:4x 2y5 xy=xy4;16a 6b4c8a3b2=2a2b2c;9x

2、8y23x2y=3x6y;(12m 3+8m2-4m)(-2m)=-6m2+4m-2.其中正确的有( ) A.0个 B.1 个 C.2 个 D.3 个7.下列等式成立的是( ) A. 21 =2 B. (a 2)3=a5 C. a6a3=a2 D. 2(x1)=2x+28.计算(x+1)(x+2)的结果为( ) A. x2+2 B. x2+3x+2 C. x2+3x+3 D. x2+2x+29.若 39m27m=321,则 m的值是( ) A. 3 B. 4 C. 5 D. 610.下列各式中,结果为 x3-2x2y+xy2的是( ) A.x(x+y)(x-y) B.x(x2+2xy+y2)

3、C.x(x+y)2 D.x(x-y)211.一个长方体的长、宽、高分别为 5x-3,4x和 2x,则它的体积等于( ) A. (5x-3)4x2x=20x3-12x2 B. 4x2x=4x2C.(5x-3)4x2x=40x3-24x2 D.(5x-3)4x=20x2-12x12.下面是小林做的 4道作业题:(1)2ab+3ab=5ab;(2)2ab3ab=ab;(3)2ab3ab=6ab;(4)2ab3ab= 做对一题得 2分,则他共得到( ) A. 2分 B. 4 分C. 6分 D. 8分二、填空题 13.计算: _ 14.计算: =_ 15.已知 , ,则 的值是_ 16.如果(x+1)(

4、x+m)的乘积中不含 x的一次项,则 m的值为_ 17.若 x2mx15=(x+3)(x+n),则 nm的值为_ 18.若把代数式 化为 的形式,其中 、 为常数,则 _ 19.若 M=(x-3)(x-5),N=(x-2)(x-6),则 M与 N的关系为_ 20.已知 a =3,那么 a2+ =_ 21.若单项式3x 4ab y2与 3x3yab 是同类项,则这两个单项式的积为_ 22.若 4x2+mx+1是一个完全平方式,则常数 m的值是_ 三、解答题23. (1)计算(x-2) 2-x(x+1) (2)先化简: ,再求出当 m=-2时原式的值。 24.利用图形中面积的等量关系可以得到某些数

5、学公式例如,根据图甲,我们可以得到两数和的平方公式:(a+b) 2=a2+2ab+b2 你根据图乙能得到的数学公式是怎样的?写出得到公式的过程25.我们知道,同底数幂的乘法法则为: (其中 a0,m,n 为正整数),类似地我们规定关于任意正整数 m,n的一种新运算:h(m+n)= 请根据这种新运算填空: (1)若 h(1)= ,则 h(2)=_. (2)若 h(1)=k(k0),那么 _(用含 n和 k的代数式表示,其中 n为正整数) 答案解析 一、选择题1.【答案】D 【解析】 :A.a 3+a3=2a3 , 故错误,A 不符合题意;B. x 3x9=x12 , 故错误,B 不符合题意;C.

6、(x 2)3=x6 ,故错误,C 不符合题意;D. x x2=x1 ,故正确,D 符合题意;故答案为:D.【分析】A.根据同类项定义:所含字母相同,并且相同字母指数相同,由此得是同类项;故能合并;计算即可判断对错;B.根据同底数幂相乘,底数不变,指数相加即可判断对错;C.根据幂的乘方,底数不变,指数相乘即可判断对错;D.根据同底数幂相除,底数不变,指数相减即可判断对错;2.【答案】B 【解析】 : = .故答案为:B.【分析】根据幂的乘方,底数不变,指数相乘,即可得出答案。3.【答案】C 【解析】 A.(a+b)(a b)=(ab)(ab),两个二项式没有相反数的项,A 不符合题意,B.(ab

7、)(a2b) 没有相反数的项,不能用平方差公式计算,B 不符合题意,C.(x+1)(x1)=x21,C 符合题意,D.(mn)(m+n)=(m+n)(m+n),两个二项式没有相反数的项,D 不符合题意,故答案为:C.【分析】根据平方差公式,两数和乘以这两个数的差,即可知.4.【答案】C 【解析】 :原式=a 2-6a+9故答案为:C。【分析】根据完全平方公式展开括号,首平方,尾平方,积的 2倍放中央。5.【答案】C 【解析】 阴影部分的面积为=4ab,或是:(a+b) 2(ab)2 .故答案为:C.【分析】利用图形找出完全平方和和完全平方差之间的关系.6.【答案】B 【解析】 :4x 2y5

8、xy=16xy4 , 因此错误;16a 6b4c8a3b2=2a3b2c,因此错误;9x 8y23x2y=3x6y,因此 正确;(12m 3+8m2-4m)(-2m)=-6m2-4m+2,因此错误;正确的只有故答案为:B【分析】利用整式的乘法法则,对各选项逐一判断即可。7.【答案】D 【解析】 A、2 1 = ,A 不符合题意;B、(a 2) 3=a6 , B 不符合题意;C、a 6a3=a3 , C 不符合题意;D、2(x1)=2x+2,D 符合题意。故答案为:D【分析】根据负整数指数幂的计算方法,可对 A作出判断;根据幂的乘方法则,可对 B作出判断;根据同底数幂的除法法则,可对 C作出判断

9、;根据去括号法则,可对 D作出判断,即可得出答案。8.【答案】B 【解析】 原式 故答案为:B.【分析】利用多项式乘多项式的法则,将括号展开,再合并同类项即可。9.【答案】B 【解析】 :39 m27m=332m33m=31+2m+3m=321,所以 1+2m+3m=21,解之:m=4.故答案为:B【分析】将等式的左边利用幂的运算性质转化为 31+2m+3m , 再建立关于 m的方程,求解即可。10.【答案】D 【解析】 :A、x(x+y)(x-y)=x(x 2-y2)=x 3-xy2 , 因此 A不符合题意;B、x(x 2+2xy+y2)=x3+2x2y+xy2 , 因此 B不符合题意;C、

10、x(x+y) 2=x(x2+2xy+y2)=x3+2x2y+xy2 , 因此 C不符合题意;D、x(x-y) 2=x(x2-2xy+y2)=x3-2x2y+xy2 , 因此 D符合题意;故答案为:D【分析】利用平方差公式、完全平方公式及单项式乘以多项式的法则,对各选项逐一计算,即可得出答案。11.【答案】C 【解析】 :根据题意得:(5x-3) 4x 2x=8x2(5x-3)=40x 3-24x2故答案为:C【分析】根据长方体的体积=长宽高,列式,利用整式的乘法法则计算即可。12.【答案】C 【解析】 (1)2ab+3ab=5ab,正确;( 2 )2ab3ab=ab,正确;( 3 )2ab3a

11、b=ab,2ab3ab=6ab 不符合题意;( 4 )2ab3ab= ,正确3 道正确,得到 6分,故答案为:C.【分析】根据合并同类项的方法,只把系数相加减,字母和字母的指数都不变;单项式除以单项式,把系数与相同字母分别相除,对于只在被除式里含有的字母则连同指数写下来作为商的一个因式;利用法则一一判断即可。二、填空题13.【答案】 a6 【解析】 :原式=a 6.故答案为:a 6.【分析】根据幂的乘方公式计算即可得出答案.14.【答案】x 8- x4+ 【解析】 :原式= = = x2- x2+ 2= =x8- x4+ 【分析】观察代数式的特点,是(a-b) 2(a 2+b2)(a+b) 2

12、的形式,因此可将原式的第一个因式和第三个因式结合利用 a2b2=(ab) 2,构造平方差公式,利用平方差公式和完全平方公式计算即可。15.【答案】14 【解析】 , , =(a+b)2-2ab=42-21=14.故答案为:14.【分析】因为 ,将已知带入,即可求出结果.16.【答案】-1 【解析】 :(x+1)(x+m)=x 2+x+mx+m=x2+(1+m)x+m,又乘积中不含 x的一次项,1+m=0,解得 m=-1故答案为:-1【分析】用多项式与多项式相乘可得: ,因为不含 x的一次项,故让 m+1=0,即可.17.【答案】25 【解析】 :原式可化为 x2mx15=x 2+(3+n)x+

13、3n, ,解得 ,n m=(5) 2=25故答案为:25【分析】将所给的等式整理后可以理解为等式左边与等式右边的式子是关于 x的同类项,从而可得到关于 m,n 的二元一次不等式组,解不等式组即可求得 m,n 的值,从而可求得 nm的值.18.【答案】-3 【解析】 配方得 = ,所以 m=1,k=-4,则 -3.故答案为:3【分析】利用配方法,求出 m、k 的值,再求出 m与 k的和即可。19.【答案】MN 【解析】 :M-N=(x-3)(x-5)-(x-2)(x-6)=x2-8x+15-(x 2-8x+12)=x2-8x+15-x2+8x-12=30即 M-N0MN故答案为:MN【分析】利用

14、求差法,求出 M-N的值即可。20.【答案】11 【解析】 即 故答案为:11【分析】将已知等式两边同时平方,求出 的值,再整体代入计算即可。21.【答案】9x 6y4 【解析 首先同类项的定义,即同类项中相同字母的指数也相同,得到关于 a,b 的方程组,然后求得a、b 的值,即可写出两个单项式,从而求出这两个单项式的积【解答】根据同类项的定义可知:,解得: 3x 4ab y2与 3x3yab 分别为3x 3y2与 3x3y2 , 3x 3y23x3y29x 6y4 故答案为:9x 6y4 【分析】本题考查了单项式的乘法及同类项的定义,属于基础运算,要求必须掌握22.【答案】4 【解析】 :4

15、x 2+mx+1=(2x)2+mx+12mx=2x12=4xm=4故答案为:4【分析】根据完全平方式的特点,首平方,尾平方,积的 2倍放中央即可得出 m的值。三、解答题23.【答案】(1)原式=x 2-4x+4-(x 2+x)=x 2-4x+4-x2-x=-5x+4(2)当 m=-2时,原式= =-2 【解析】【分析】(1)根据完全平方公式及单项式乘以多项式的法则取括号,然后合并同类项即可;(2)首先确定最简公分母,然后通分计算异分母分式的减法,分子分母能分解因式的必须分解因式,然后约分化为最简形式,再代入 m得值算出结果。24.【答案】解:(ab) 2=a22ab+b 2 大正方形的面积=(

16、ab) 2 , 还可以表示为 a22ab+b 2 , (ab) 2=a22ab+b 2 【解析】【分析】根据图形面积公式得到完全平方公式 a22ab+b 2=(ab) 2. 25.【答案】(1)(2)k n+2017 【解析】 (1)h(1)= ,h(2)=h(1+1)=h(1)h(1)= =(2)h(1)=k(k0),h(m+n)= h ( m ) h ( n )h ( n ) h ( 2017 ) =k nk2017=kn+2017故答案为: ;k n+2017【分析】(1)根据新定义运算,先将 h(2)转化为 h(1+1),再根据 h(m+n)= h ( m ) h ( n ),即可得出答案。(2)根据 h(1)=k(k0),及新定义的运算,将原式变形为 knk2017 , 再利用同底数幂的乘法法则计算即可。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中等教育 > 小学课件

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报