1、第4节平行关系,最新考纲1.以立体几何的定义、公理和定理为出发点,认识和理解空间中线面平行的有关性质与判定定理;2.能运用公理、定理和已获得的结论证明一些有关空间图形的平行关系的简单命题.,1.直线与平面平行(1)直线与平面平行的定义直线l与平面没有公共点,则称直线l与平面平行.,知 识 梳 理,(2)判定定理与性质定理,一条直线与此平面,内的一条直线,交线,2.平面与平面平行(1)平面与平面平行的定义没有公共点的两个平面叫作平行平面.(2)判定定理与性质定理,相交直线,平行,交线,常用结论与微点提醒1.平行关系中的两个重要结论(1)垂直于同一条直线的两个平面平行,即若a,a,则.(2)平行于
2、同一平面的两个平面平行,即若,则.2.线线、线面、面面平行间的转化,1.思考辨析(在括号内打“”或“”)(1)若一条直线和平面内一条直线平行,那么这条直线和这个平面平行.()(2)若直线a平面,P,则过点P且平行于直线a的直线有无数条.()(3)如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行.()(4)如果两个平面平行,那么分别在这两个平面内的两条直线平行或异面.(),诊 断 自 测,解析(1)若一条直线和平面内的一条直线平行,那么这条直线和这个平面平行或在平面内,故(1)错误.(2)若a,P,则过点P且平行于a的直线只有一条,故(2)错误.(3)如果一个平面内的两条直线平行于另
3、一个平面,则这两个平面平行或相交,故(3)错误.答案(1)(2)(3)(4),2.(教材习题改编)下列命题中正确的是()A.若a,b是两条直线,且ab,那么a平行于经过b的任何平面B.若直线a和平面满足a,那么a与内的任何直线平行C.平行于同一条直线的两个平面平行D.若直线a,b和平面满足ab,a,b,则b解析根据线面平行的判定与性质定理知,选D.答案D,3.设,是两个不同的平面,m是直线且m.“m”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件解析当m时,可能,也可能与相交.当时,由m可知,m.“m”是“”的必要不充分条件.答案B,4.(20
4、18西安模拟)已知m,n是两条不同的直线,是三个不同的平面,则下列命题中正确的是()A.m,n,则mn B.mn,m,则nC.m,m,则 D.,则解析A中,m与n平行、相交或异面,A不正确;B中,n或n,B不正确;根据线面垂直的性质,C正确;D中,或与相交,D错.答案C,5.(教材练习改编)如图,正方体ABCDA1B1C1D1中,E为DD1的中点,则BD1与平面AEC的位置关系为_.,解析连接BD,设BDACO,连接EO,在BDD1中,O为BD的中点,E为DD1的中点,所以EO为BDD1的中位线,则BD1EO,而BD1平面ACE,EO平面ACE,所以BD1平面ACE.答案平行,考点一与线、面平
5、行相关命题的判定【例1】 (1)(2018成都诊断)已知m,n是空间中两条不同的直线,是两个不同的平面,且m,n.有下列命题:若,则mn;若,则m;若l,且ml,nl,则;若l,且ml,mn,则.其中真命题的个数是()A.0 B.1 C.2 D.3,解析(1)若,则mn或m,n异面,不正确;若,根据平面与平面平行的性质,可得m,正确;若l,且ml,nl,则与不一定垂直,不正确;若l,且ml,mn,l与n不一定相交,不能推出,不正确.(2)如图,对于,连接MN,AC,则MNAC,连接AM,CN,易得AM,CN交于点P,即MN面APC,所以MN面APC是错误的.对于,由知M,N在平面APC内,由题
6、易知ANC1Q,且AN平面APC,C1Q平面APC.所以C1Q面APC是正确的.,对于,由知,A,P,M三点共线是正确的.对于,由知MN面APC,又MN面MNQ,所以面MNQ面APC是错误的.,答案(1)B(2),规律方法1.判断与平行关系相关命题的真假,必须熟悉线、面平行关系的各个定义、定理,无论是单项选择还是含选择项的填空题,都可以从中先选出最熟悉最容易判断的选项先确定或排除,再逐步判断其余选项.2.(1)结合题意构造或绘制图形,结合图形作出判断.(2)特别注意定理所要求的条件是否完备,图形是否有特殊情况,通过举反例否定结论或用反证法推断命题是否正确.,【训练1】 (1)设m,n是不同的直
7、线,是不同的平面,且m,n,则“”是“m且n”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件(2)(2016全国卷),是两个平面,m,n是两条直线,有下列四个命题:如果mn,m,n,那么.如果m,n,那么mn.如果,m,那么m.如果mn,那么m与所成的角和n与所成的角相等.其中正确的命题有_(填写所有正确命题的编号).,解析(1)若m,n,则m且n;反之若m,n,m且n,则与相交或平行,即“”是“m且n”的充分不必要条件.(2)当mn,m,n时,两个平面的位置关系不确定,故错误,经判断知均正确,故正确答案为.答案(1)A(2),考点二直线与平面平行的判定与性
8、质(多维探究)命题角度1直线与平面平行的判定【例21】 (2016全国卷)如图,四棱锥PABCD中,PA底面ABCD,ADBC,ABADAC3,PABC4,M为线段AD上一点,AM2MD,N为PC的中点.,(1)证明:MN平面PAB;(2)求四面体NBCM的体积.,又ADBC,故TN綊AM,所以四边形AMNT为平行四边形,于是MNAT.因为AT平面PAB,MN平面PAB,所以MN平面PAB.,(2)解因为PA平面ABCD,N为PC的中点,,命题角度2直线与平面平行性质定理的应用【例22】 (2018宜春质检)如图,五面体ABCDE,四边形ABDE是矩形,ABC是正三角形,AB1,AE2,F是线
9、段BC上一点,直线BC与平面ABD所成角为30,CE平面ADF.(1)试确定F的位置;(2)求三棱锥ACDF的体积.,解(1)连接BE交AD于点O,连接OF,CE平面ADF,CE平面BEC,平面ADF平面BECOF,CEOF.O是BE的中点,F是BC的中点.,(2)BC与平面ABD所成角为30,BCAB1,,规律方法1.利用判定定理判定线面平行,关键是找平面内与已知直线平行的直线.常利用三角形的中位线、平行四边形的对边或过已知直线作一平面找其交线.2.在解决线面、面面平行的判定时,一般遵循从“低维”到“高维”的转化,即从“线线平行”到“线面平行”,再到“面面平行”;而在应用性质定理时,其顺序恰
10、好相反.,【训练2】 (2017江苏卷)如图,在三棱锥ABCD中,ABAD,BCBD,平面ABD平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EFAD.求证:(1)EF平面ABC;(2)ADAC.,证明(1)在平面ABD内,ABAD,EFAD,则ABEF.AB平面ABC,EF平面ABC,EF平面ABC.(2)BCBD,平面ABD平面BCDBD,平面ABD平面BCD,BC平面BCD,BC平面ABD.AD平面ABD,BCAD.又ABAD,BC,AB平面ABC,BCABB,AD平面ABC,又因为AC平面ABC,ADAC.,考点三面面平行的判定与性质(典例迁移)【例3】 (经典母题)
11、如图所示,在三棱柱ABCA1B1C1中,E,F,G,H分别是AB,AC,A1B1,A1C1的中点,求证:(1)B,C,H,G四点共面;(2)平面EFA1平面BCHG.,证明(1)G,H分别是A1B1,A1C1的中点,GH是A1B1C1的中位线,则GHB1C1.又B1C1BC,GHBC,B,C,H,G四点共面.,(2)E,F分别为AB,AC的中点,EFBC,EF平面BCHG,BC平面BCHG,EF平面BCHG.又G,E分别为A1B1,AB的中点,A1B1綊AB,A1G綊EB,四边形A1EBG是平行四边形,A1EGB.A1E平面BCHG,GB平面BCHG,A1E平面BCHG.又A1EEFE,平面E
12、FA1平面BCHG.,【迁移探究1】 在本例中,若将条件“E,F,G,H分别是AB,AC,A1B1,A1C1的中点”变为“D1,D分别为B1C1,BC的中点”,求证:平面A1BD1平面AC1D.,证明如图所示,连接A1C交AC1于点M,四边形A1ACC1是平行四边形,M是A1C的中点,连接MD,D为BC的中点,A1BDM.,A1B平面A1BD1,DM平面A1BD1,DM平面A1BD1,又由三棱柱的性质知,D1C1綊BD,四边形BDC1D1为平行四边形,DC1BD1.又DC1平面A1BD1,BD1平面A1BD1,DC1平面A1BD1,又DC1DMD,DC1,DM平面AC1D,因此平面A1BD1平
13、面AC1D.,规律方法1.判定面面平行的主要方法(1)利用面面平行的判定定理.(2)线面垂直的性质(垂直于同一直线的两平面平行).2.面面平行条件的应用(1)两平面平行,分析构造与之相交的第三个平面,交线平行.(2)两平面平行,其中一个平面内的任意一条直线与另一个平面平行.提醒利用面面平行的判定定理证明两平面平行,需要说明是在一个平面内的两条直线是相交直线.,【训练3】 (2018东北三省四校联考)如图,在三棱柱ABCA1B1C1中,AA1底面ABC,ABAC,ACAA1,E,F分别是棱BC,CC1的中点.(1)若线段AC上存在点D满足平面DEF平面ABC1,试确定点D的位置,并说明理由;(2)证明:EFA1C.,(1)解点D是AC的中点,理由如下:平面DEF平面ABC1,平面ABC平面DEFDE,平面ABC平面ABC1AB,ABDE,在ABC中,E是BC的中点,D是AC的中点.,(2)证明三棱柱ABCA1B1C1中,ACAA1,四边形A1ACC1是菱形,A1CAC1.AA1底面ABC,AB平面ABC,AA1AB,又ABAC,AA1ACA,AB平面AA1C1C,A1C平面AA1C1C,ABA1C.又ABAC1A,从而A1C平面ABC1,又BC1平面ABC1,A1CBC1.又E,F分别是BC,CC1的中点,EFBC1,从而EFA1C.,