分享
分享赚钱 收藏 举报 版权申诉 / 143

类型1热力学第一定律.ppt

  • 上传人:无敌
  • 文档编号:1384451
  • 上传时间:2018-07-09
  • 格式:PPT
  • 页数:143
  • 大小:4.91MB
  • 配套讲稿:

    如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。

    特殊限制:

    部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。

    关 键  词:
    1热力学第一定律.ppt
    资源描述:

    1、物 理 化 学主讲:林晓芝短号:676907,化学变化 物理变化,P 、V 、T,热效应电效应光效应,原子的运动、振动、转动分子间的相对作用力,物质分子性能化学反应能力,物 理 化 学,一、物理化学的研究内容,物理化学:,从研究化学现象和物理现象之间的相互联系入手,运用物理方法,找出化学运动中最具有普遍性的基本规律的学科。,研究物理化学的目的: 为了解决生产实际和科学实验中向化学提出的理论问题,揭示化学变化的本质,使人们更好地驾驭化学,使之为生产实际服务。,是化学专业的核心主干课程!,在设计新的反应路线或试制新的化学产品时,变化的方向和限度问题,显然是十分重要的。只有确知存在反应的可能性的前提

    2、下,再去考虑反应的速率问题, 否则将徒劳无功。,如:由石墨制造金刚石,一开始所有的尝试都以失败告终。后来通过热力学计算知道,只有当压力超过标准大气压15000倍时,石墨才有可能转变成金刚石。,A + B G + H,反应方向反应限度,化学热力学,反应速率反应机理,化学动力学,分子、原子结构及微观粒子的运动规律,结构化学,二、学习物理化学的方法,(1)运用逻辑推理的思维方法,(2)注意自己动手推导公式,(3)多做习题,勤于思考,(4)具备一定的高等数学基础、基本的物理知识,考试科目,闭卷考试总成绩=考试成绩70%+平时成绩30%平时成绩=考勤10%+作业10%+平时表现10%,热力学的方法特点:

    3、,热 力 学 概 论,、研究对象为大量质点的宏观体系,即只研究物质的宏观性质,不考虑微观性质和个别分子的行为。,、只须知道系统的始、终态,就可进行相应的计算,即不管过程进行的机理,也无须知道其结构变化。,、在热力学研究中无时间概念,,即不管(反应)变化速率。,例:根据热力学计算,金刚石可自发地变成石墨,但这个过程需用多少时间?发生变化的根本原因和机理?热力学中无法知道。,1.2 基本概念,一、系统和环境 二、状态和状态性质三、过程与途径 四、热力学平衡系统,体系(System),在科学研究时必须先确定研究对象,把一部分物质与其余分开,这种分离可以是实际的,也可以是想象的。这种被划定的研究对象称

    4、为系统。,环境(surroundings),系统以外的,与系统有关的部分,系统与环境有实际的或想象的界面分开,一、系统和环境,系统的分类,敞开系统 open,密闭系统closed,孤立(隔离)系统isolated,(1)敞开体系(open system) 体系与环境之间既有物质交换,又有能量交换。,(2)封闭体系(closed system) 体系与环境之间无物质交换,但有能量交换。,(3)孤立体系(isolated system) 体系与环境之间既无物质交换,又无能量交换,故又称为隔离体系。有时把封闭体系和体系影响所及的环境一起作为孤立体系来考虑。,系统和环境 例:,绝热壁,水,水蒸气,敞开

    5、系统,密闭系统,孤立系统,二、状态和状态函数State and State function,状态:系统的物理,化学性质的综合表现;,如:单相纯物质密闭系统V=f (T, p) 或 p=f (T,V),状态性质:,系统处于某一状态时的性质,是系统本身所属的宏观物理量。,如:T,p, ,V,m, U,H,S,状态性质之间互相联系的,不是独立的,在数学上有函数关系,所以又称状态函数。,状态函数的特性,其数值仅取决于体系所处的状态,而与体系的历史无关;它的变化值仅取决于体系的始态和终态,而与变化的途径无关。,可描述为:异途同归,值变相等;周而复始,数值还原。,状态函数在数学上具有全微分的性质。,状态

    6、方程,体系状态函数之间的定量关系式称为状态方程,对于一定量的单组分均匀体系,状态函数T,p,V 之间有一定量的联系。经验证明,只有两个是独立的,它们的函数关系可表示为:,T = f(p,V)P = f(T,V)V = f(p,T),例如,理想气体的状态方程可表示为: pV = nRT,状态性质的分类,容量性质: 其数值与系统中物质的量成正比,具有加和性 如:Vini V(总)=V1+V2+,强度性质: 其数值与系统中物质的量无关,不具有加和性 如:T,p,,注意:,1.状态性质只说明系统当时所处的状态,不能说明系统以前的状态,2.两个容量性质相除得强度性质。,如: m /V, Vm=V /n,

    7、系统状态发生的变化 过程,1、简单状态变化过程,如:,2、相变过程:系统物态发生变化,,三、过程与途径,变化的具体步骤 途径,过程可分为三类:,如:气化(vapor):液气 熔化(fusion):固液 升华(sublimation):固气,3、化学变化过程: 化学反应,25C, p,100C, 2p,25C, 2p,100C, p,定温过程( )T 定压过程( )p 定容过程( )V 循环过程,绝热过程等。如:,( )T,( )T,( )p,( )p,途径:( )T +( )p 或( )p +( )T,3、化学变化过程: 化学反应,Zn,定温定压下在烧杯中进行,定温定压下在原电池中进行,Zn+

    8、CuSO4 (aq) Cu+ZnSO4 (aq),四、热力学平衡系统,系统与环境间 无物质、能量的交换,系统各状态性质均不随时间而变化时,称系统处于热力学平衡。,热力学平衡系统必须同时处于下列四个平衡:,1.热平衡:,2.机械平衡:,3.化学平衡:,4.相平衡:,无阻碍下,系统中各部分温度相同。,系统中无刚壁存在时,系统中压力相同,系统中无化学变化阻力存在时,无宏观化学反应发生,系统中各相的数量和组成不随时间变化,无宏观相变,能量守恒原理: 能量不能无中生有,也不会无形消失。,1.3 能量守恒 热力学第一定律,对于热力学系统而言,能量守恒原理就是热力学第一定律。热力学第一定律的说法很多,但都说

    9、明一个问题能量守恒。,能量可以从一种形式转换成另一种形式,如热和功的转换。但是,转换过程中,能量总量保持不变。,热力学第一定律的经典表述:,不供给能量而可以连续不断对外做功的机器叫作第一类永动机。无数事实表明,第一类永动机不可能存在。,这种表述只是定性的, 不能定量的主要原因是测量热和功所用的单位不同,它们之间没有一定的当量关系。1840年左右, Joule和mayer 做了二十多年的大量实验后,得到了著名的热功当量:1 cal = 4.184 J和 1J = 0.239 cal 。热功当量为能量守恒原理提供了科学的实验证明。,1、内能:除整体动能、整体势能以外的系统中一切形式的能量(如分子的

    10、平动能、转动能、振动能、电子运动能及原子核内的能等等)。,、内能是系统的状态函数。,、内能是容量性质。,、内能的绝对值现在无法测量,但对热力学来说,重要的是U。,、如果变化无限小,则内能变化可表示为dU,一、内能U,在数学上是全微分:,证明:系统状态一定时,内能值就为定值。,(反证法)系统状态从A经1或2到B,U1=UBUA=U2,若假设U1U2,系统状态,一次循环U=U1 U20,如此每经过一次循环,就有多余的能量产生,不断循环进行,就构成了第一类永动机,所以原假设不成立,即U1=U2 。,推论:系统状态发生变化时,系统的内能变化只决定于始终态,而与变化途径无关。,A,B,1,2,p,V,二

    11、、功和热 work and heat,定义:功和热是系统和环境之间交换能量的仅有两种形式功的种类:体积功(WV ) 非体积功(W ),符号规定:热Q: 系统吸热为正,放热为负;功W:系统做功为负,环境对系统做功为正。,功和热不是系统的状态性质,其数值大小与系统的状态变化有关,也与变化途径有关。,三、热力学第一定律的数学表达式,U = Q +W或 dU = Q + W,其中:W = WV + W,对于密闭系统:系统吸收的热量为Q,得到的功为W,大量水,电源,解:1:系统状态未变,故U=0;水(环境)吸热,电炉丝Q0,2:系统绝热,故Q = 0,电源(环境)做功,系统W0,U = Q+W = W

    12、0,3:为孤立系统,故 Q = 0,W = 0 ,U= 0,1.电炉丝为系统2.电炉丝和水为系统3.电炉丝、电源和水为系统。判断Q, W, U是0, Vl,s) = nRT (理想气体),例如: H2O(l)H2O(g) 100, p 95, 84.51kPa 25, 3.167kPa,例:100,p下1mol水经 可逆相变 变成同温同压的水蒸气 向真空蒸发 变成同温同压的水蒸气, 0,p下1mol冰变成同温同压的水,计算各做功多少?已知2(冰)= 0.917 gcm-3,1(水)=1.000 gcm-3。,解: W= p V= p Vg = nRT = 3.1kJ W= p外V=0,W= p

    13、外V =,P24 习题12,1mol液体水在100和标准压力下蒸发,计算此过程的体积功(1)已知在100和标准压力下,水蒸气的比体积(体积除以质量)为1677cm3g1,水的比体积为1.043cm3g1 。(2)假设水的体积比之水蒸气的体积可以忽略不计,蒸气作为理想气体。比较两者所得的结果,说明(2)的省略是否合理?,解:,(1)此过程为等压过程,W= p V = 105(1677-1.043)10618J,单位转化为 m3g1,= 3.017 103J,(2)忽略水的体积,并假设水蒸气为理想气体:,W= p V= p Vg = nRT = (18.314373)J,= 3.101103J,结

    14、果相差不大,水的体积省略是合理的,P24 习题13,已知在0和标准压力下,冰的密度为0.917gcm3。试计算在0 及标准压力下,1mol冰熔化成水所需之功。,解:,固态和液态的体积相差不大,不可忽略任何一项,W = p(V2V1) = p(V水V冰),= 105(18 /1 18 / 0.917)106J,= 0.163J,答:,结果说明相比较起有气态参加的相变体积功,固态与液态之间的相变体积功是很小的。,一、定容热QV,dU =Q +WV +W 只做体积功时 =Q +(WV) =QV p外 dV 定容: dV=0 =QV,U= QV 条件:只做体积功,定容,1.5 定容及定压下的热,第一定

    15、律 dU = Q + (WV ) + (W)只做体积功时 = Q WV =Q p dV (定压) =Qp p外 dV,二、定压热Qp,U= U 2U1 = Qp p外 V = Qp p外 (V2 V1)Qp = (U 2 + p2V2 ) ( U1+ p1V1),状态性质,定义为“焓”,符号H,焓 H,1. 焓是状态函数(由状态函数组合而成);2. 容量性质:与n有关;3. 单位:J or kJ,Qp = (U 2 + p2V2 ) ( U1+ p1V1),= H 2 H 1 = H Qp = H成立条件:只做体积功,定压,注意:(1)U=QV , H=Qp 只是在特定条件下的数值上的联系;(

    16、2)U, H是系统的状态性质,系统无论发生什么过程,都有U、H,而不是定容过程、定压过程才有U, H,只不过在定容、定压条件下可用QV, Qp来计算;(3)这种关系是相互的,可由QV, Qp求U, H,也可反之。,因等压膨胀,Qp = H因绝热 Qp = 0 所以 H= Qp = 0 此结论对否?,解:结论是错的。因为,(1)若以气体为系统,电炉丝为环境,则不是绝热系统, Qp 0 ;,(2)若以气体加电炉丝为系统,则为绝热系统Qp = 0 ,但因有电功,所以H Qp 。,电源,例:装置如图:等外压,,p1=p2=p外 等压膨胀,缓慢加热,缓慢膨胀,可见系统的选择是很重要的 。,P19 习题1

    17、4,在373K和标准压力下,水的蒸发热为4.067104Jmol1,1mol液态水体积为18.08cm3,蒸气则为30200cm3 。试计算在该条件下1mol水蒸发成气的U和H。,解:,此过程为定压过程,没有其他功:,H = Qp =(4.0671041)J,= 4.067104J,系统所做的功 W,= p(V2V1),= 105(3020018. 08)106 J,= 3.018 103 J,U= Qp+ W,= 4.067104J +( 3.018 103 )J,= 37.65 103 J,答:,P19 习题15,一理想气体在保持恒定压力105Pa下,从10dm3膨胀到16dm3,同时吸热

    18、1255J,计算此过程的U和H。,解:,此过程是等压过程,只做体积功,Qp = H =1255J,H = U + pV,U = H p(V2V1),= 1255 105(1610)103J,= 655J,1.6 理想气体的内能与焓,一、Joule实验二、理想气体的内能: U = f(T)三、理想气体的焓: H = f(T),实验结果:水浴温度不变即T=0,说明Q=0;因向真空膨胀,W=0,所以U= Q + W =0;但V 0,说明当温度恒定时,U与V无关。,一、Joule实验 1843年,纯物质单相密闭系统 U=f (T,V),根据焦耳实验结果:dT=0, dV0, dU=0,理想气体的U=f

    19、 (T),只是温度的函数,二、理想气体的内能,只有理想气体的内能才只是温度的函数,对于非理想气体来说,内能仍与体积有关,理想气体分子之间无作用力,当V,对U无影响;,如绝热自由膨胀过程: Q=0, W=0 , U=0, 即为等内能过程,实际气体经等内能膨胀过程后,温度下降。,气体内能与温度的关系的微观认识:,焦耳系数J,若要维持T不变,须吸收能量,所以U,实际气体膨胀时,必须克服分子内的引力(或对抗内聚力)而做功。由于分子间平均距离增大,平均位能将改变:,若无外加能量时(U=0),则要消耗分子的动能,所以T,根据 H=U+pV,而,H= f(T) ,理想气体的U和H只是温度的函数,所以理想气体

    20、定温过程: U=0, H=0, Q =W,三、理想气体的焓,恒温时 pV= nRT,0,0,P21 习题16,假设N2为理想气体,在0和5105Pa下,用2dm3N2作定温膨胀到压力为105Pa。(1)如果是可逆膨胀;(2)如果膨胀是在外压恒定为105Pa的条件下进行。计算此两过程的Q、W、U和H。,解:,(1)理想气体作等温可逆膨胀,U= 0,H= 0,Q = W = nRT ln( p1 / p2 ),= p1V1 ln( p1 / p2 ),=1609J,(2)理想气体作等温不可逆膨胀,U= 0,H= 0,p1V1 = p2V2 = nRT,= 0.01m3,= 10 dm3,Q = W

    21、 = p外( V2 V1 ),= 105(102) 103J,= 800J,1.7 热容 C (Heat Capacity),CV(定容热容)=,Cp(定压热容)=,条件:( )V or ( )p 只做体积功,任何纯物质。对于纯物质单相密闭系统(双变量系统):,一、热容,每升高单位温度所需吸收的热,任何纯物质:当等容或等压时, 上式中的第二项为零 (dU)V =CV dT (dH)p =Cp dT,理想气体的U= f(T), H = f(T)所以任意无化学变化,只做体积功的过程:,dUid(g)=CV dT dHid(g) =Cp dTU=CV T H =Cp T,理想气体 :dUid(g)=

    22、CV dT dHid(g) =Cp dT,将dU=CV dT,dH =Cp dT 代入定义式 dH = dU+ dpV 可得CpdT = CVdT + nRdT Cp CV = nR or Cp,m CV,m =R,二、CV 和Cp的关系,P23 习题18,有3mol双原子分子理想气体由25加热到150,试计算此过程的U和H。,解:,U = nCV,m T,= 3 5/2R (15025)J,2.58.314,= 7.79103J,H = nCp,m T,= 3 7/2R (15025)J,3.58.314,= 10.9103J,答:,P23 习题19,有1mol单原子分子理想气体在0,105

    23、Pa时经一变化过程,体积增大一倍,H=2092J,Q=1674J,(1)求终态时的温度、压力及此过程的U和W;(2)如果该气体经定温和定容两步可逆过程到达上述终态,试计算Q、W、U和H。,(1)由H = nCp,m T 得:,解:,H / nCp,m = T2T1,T2 = T1 + H / nCp,m,= 2092 / (2.58.314)+273K,= 373.8K,p1V1= nRT1,p2V2= nRT2,p1V1 / T1 = p2V2 / T2 = nR,p2 = T2 p1V1 / (V2 T1 ),= 6.84104Pa,U = nCV,m T,=13/2R(373.8273.

    24、2)J=1255J,W= U- Q = (1674+1255)J = 2929J,(2)因始、终态相同,所以此过程的U 和H与上一过程相同,U = 1255J,H = 2092J,p1,V1,T1,P,V2,T1,P2,V2,T2,过程:,W1= - nRT1 ln(V2 /V1 ),= - (18.314273.2ln2)J,= -1574J,过程:,W2 = 0,W总 = W1+ W2 = 1574J,Q = U - W = (1255 + 1574)J = 2829J,答:,纯物质的热容随温度升高而增大。其经验关系式: Cp,m = a + bT + cT 2 or Cp,m = a +

    25、 bT + cT 2,注意:,1. 查表所得的是Cp,m Cp =nCp,m2. 注意数据的适用温度范围;3.注意物质的物态。有相变化时,热的求算应分段进行,再加上相变热;H=CpdT + H(相变)4.不同书、手册所列数据可能不同,但多数情况下, 计算结果差不多是相符的。 高温下不同公式之间 误差较大,三、热容与温度的关系,例2,试计算在常压下,1molCO2 温度从25升到200时所需吸收的热。,解:,=,查表得:,= 7.28 103 J,答:,例3:恒定压力下, 2mol 50的液态水变作150的水蒸汽,求过程的热。已知水和水蒸气的平均定压摩尔热容分别为75.31及33.47 JK-1

    26、 mol-1; 水在100及标准压力下蒸发成水蒸汽的摩尔汽化热vapHm 为40.67 kJmol-1。,2mol 50水,升温,解:该过程包括升温、汽化和再升温三个过程,2mol 100水,汽化,2mol 100水蒸气,H1,H2,升温,2mol 150水蒸气,H3,Qp =H= H1+ H2+ H3,(1)50的水变作100的水:,Qp1 = H1 = nCp,m(T2 T1),(2)相变:100的水变作100的水蒸气:,Qp2 = H2= 2vapHm = (240.67)kJ = 81.341kJ,(3)100的气变作150的气:,Qp3 = H3 = nCp,m(T2 T1),Qp

    27、=H= H1+ H2+ H3 =(7.531+81.341+3.347)kJ= 92.22kJ,= 275.31(373 323)J = 7.531kJ,= 233.47(423 373)J= 3.347kJ,P25 习题23,求算2mol100,4104Pa的水蒸气变成100及标准压力的水时,此过程的U和H。设水蒸气可视为理想气体,液体水的体积可忽略不计,已知水的摩尔气化热为40.67kJmol1,解:,上述过程可分为下面两个过程:,100,4104Pa,H2O(g),100,p,H2O(g),100,p,H2O(l),过程是理想气体等温过程:,U1=H1= 0,过程是等温等压下可逆相变:,

    28、H2= nvapHm,=81.34kJ,U2 = H2 pV = H2 + 2RT =75.14kJ,总过程,U=U1 + U2,=75.14kJ,H=H1 + H2,=81.34kJ,答:,1.8 理想气体绝热过程,绝热过程的功,在绝热过程中,体系与环境间无热的交换,但可以有功的交换。根据热力学第一定律:,这时,若体系对外作功,热力学能下降,体系温度必然降低,反之,则体系温度升高。因此绝热压缩,使体系温度升高,而绝热膨胀,可获得低温。,绝热可逆,W=0: dU = WV = p dV理想气体: dU = nCV,m dT = CV dT CV dT = p dV因 p = nRT/V CV

    29、dT = nRT dV/V整理 CV dT/T = nR dV/V,积分,理想气体绝热可逆过程方程,代入pV=nRT,同理,T1 V1 1 = T2 V2 1 即 TV1 =常数,理想气体绝热可逆过程方程,令 Cp / CV = (热容比),p1V1 = p2V2 ,pV = 常数,代入V=nRT/p p(T/p)= T p1=常数,代入p=nRT/V,温度升高,p2,p2,V2,V2,1, |slope|绝热 |slope|定温,绝热可逆线比较陡, 在p-V图中,从同一始态出发,,绝热可逆线 pV = 常数,p=C/ V ,所以终态V2 相同时,绝热可逆过程因温度下降, p2 p2,终态 p2相同时,绝热可逆过程因温度下降,V2 0, 温度下降。大多数气体,如CO2, N2J-T 0, 温度上升。如H2, HeJ-T =0, 温度不变。理想气体,

    展开阅读全文
    提示  道客多多所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。
    关于本文
    本文标题:1热力学第一定律.ppt
    链接地址:https://www.docduoduo.com/p-1384451.html
    关于我们 - 网站声明 - 网站地图 - 资源地图 - 友情链接 - 网站客服 - 联系我们

    道客多多用户QQ群:832276834  微博官方号:道客多多官方   知乎号:道客多多

    Copyright© 2025 道客多多 docduoduo.com 网站版权所有世界地图

    经营许可证编号:粤ICP备2021046453号    营业执照商标

    1.png 2.png 3.png 4.png 5.png 6.png 7.png 8.png 9.png 10.png



    收起
    展开