收藏 分享(赏)

纳米粒子与材料的制备化学.ppt

上传人:天天快乐 文档编号:1360170 上传时间:2018-07-03 格式:PPT 页数:27 大小:984.50KB
下载 相关 举报
纳米粒子与材料的制备化学.ppt_第1页
第1页 / 共27页
纳米粒子与材料的制备化学.ppt_第2页
第2页 / 共27页
纳米粒子与材料的制备化学.ppt_第3页
第3页 / 共27页
纳米粒子与材料的制备化学.ppt_第4页
第4页 / 共27页
纳米粒子与材料的制备化学.ppt_第5页
第5页 / 共27页
点击查看更多>>
资源描述

1、第八章 纳米粒子与材料的制备化学,纳米材料的主要形式,纳米粒子,纳米线,纳米带,纳米管,纳米膜,纳米固体材料,纳米材料分类,纳米材料大致可分为纳米粉末材料、一维纳米材料、纳米薄膜材料、纳米块体材料等,纳米粉末:又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间物态的固体颗粒材料。 纳米纤维:指直径为纳米尺度而长度较大的线状材料。包括:纳米管、纳米线、纳米带等 纳米膜:纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。 纳米块体:是将纳米粉末高压成型或控制金属液体结晶而得

2、到的纳米晶粒材料。,纳米粒子合成概述,自然界中的纳米粒子尘埃、烟20世纪初人们已开始用蒸发法制备金属及其氧化物的纳米粒子20世纪中期人们探索机械粉碎法使物质粒子细化(极限为数微米)近几十年来机械粉碎法可以使微粒小到0.5微米左右多种化学方法(表面活性剂的应用)和物理方法的开发近十年来各种高技术,如激光技术、等离子体技术等的应用,使得制备粒度均匀、高纯、超细、分散性好的纳米粒子成为可能,但问题是如何规模化,纳米粒子合成方法分类,纳米粒子合成的物理方法粉碎法,“粉碎”一词是指块体物料粒子由大变小过程的总称,它包括“破碎”和“粉磨”。前者是由大料块变成小料块的过程,后者是由小料块变成粉末的过程。粉碎

3、过程就是在粉碎力的作用下固体物料或粒子发生形变进而破裂的过程。当粉碎力足够大时,力的作用又很迅猛,物料块或粒子之间瞬间产生的引力大大超过了物料的机械强度。因而物料发生了破碎。粉碎作用力的类型主要有如右图所示几种。可见物料的基本粉碎方式是压碎、剪碎、冲击粉碎和磨碎。常借助的外力有机械力、流能力、化学能、声能、热能等。主要由湿法粉碎和干法粉碎两种。,粉碎力作用形式,一般的粉碎作用力都是几种力的组合,如球磨机和振动磨是磨碎和冲击粉碎的组合;雷蒙磨是压碎、剪碎和磨碎的组合;气流磨是冲击、磨碎与剪碎的组合,等等。 物料被粉碎时常常会导致物质结构及表面物理化学性质发生变化,主要表现在:1、粒子结构变化,如

4、表面结构自发的重组,形成非晶态结构或重结晶。2、粒子表面的物理化学性质变化,如电性、吸附、分散与团聚等性质。3、受反复应力使局部发生化学反应,导致物料中化学组成发生变化。,纳米粒子合成的物理方法构筑法,构筑法是由小极限原子或分子的集合体人工合成超微粒子,纳米粒子合成的化学方法,化学法主要是“自下而上”的方法,即是通过适当的化学反应(化学反应中物质之间的原子必然进行组排,这种过程决定物质的存在状态),包括液相、气相和固相反应,从分子、原子出发制备纳米颗粒物质。化学法包括气相反应法和液相反应法。,气相反应法可分为:气相分解法、气相合成法 、气固反应法等液相反应法可分为:沉淀法、溶剂热法、溶胶凝胶法

5、、反相胶束法等,纳米粒子的气相反应法合成气相合成法,通常是利用两种以上物质之间的气相化学反应,在高温下合成为相应的化合物,再经过快速冷凝,从而制备各类物质的纳米粒子。一般的反应形式为:,液相反应法合成纳米粒子沉淀法,沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适当的沉淀剂制备纳米粒子的前驱体沉淀物,再将此沉淀物进行干燥或煅烧,从而制得相应得纳米粒子。存在于溶液中的离子A和B, 当它们的离子浓度积超过其溶度积A+.B-时,A和B之间就开始结合,进而形成晶核。由晶核生长和在重力的作用下发生沉降,形成沉淀物。一般而言,当颗粒粒径成为1微米以上时就形成沉淀。沉淀物的粒径取决于核形

6、成与核成长的相对速度。即核形成速度低于核成长,那么生成的颗粒数就少,单个颗粒的粒径就变大。,沉淀法主要分为: 直接沉淀法、共沉淀法、均匀沉淀法、 水解沉淀法、化合物沉淀法等,在含有多种阳离子的溶液中加入沉淀剂后,所有离子完全沉淀的方法称为共沉淀法。根据沉淀的类型可分为单相共沉淀和混合共沉淀。,例如:1. 在Ba,Ti的硝酸盐溶液中加入草酸沉淀剂后,形成了单相化合物BaTiO(C2H4)24H2O沉淀。经高温分解,可制得BaTiO3的纳米粒子。2. 将Y2O3用盐酸溶解得到YCl3,然后将ZrOCl28H2O和YCl3配成一定浓度的混合溶液,在其中加入NH4OH后便有Zr(OH)4和Y(OH)3

7、的沉淀形成,经洗涤、脱水、煅烧可制得ZrO2(Y2O3)的纳米粒子。,沉淀法合成纳米粒子均匀沉淀法,在金属盐溶液中加入沉淀剂溶液时,即使沉淀剂的含量很低,不断搅拌,沉淀剂浓度在局部溶液中也会变得很高。均匀沉淀法是不外加沉淀剂,而是使沉淀剂在溶液内缓慢地生成,消除了沉淀剂的局部不均匀性。,例如:将尿素水溶液加热到70左右,就会发生如下水解反应:(NH2)2CO + 3H2O 2NH4OH + CO2 该反应在内部生成了沉淀剂NH4OH。,沉淀法合成纳米粒子水解沉淀法,众所周知,有很多化合物可用水解生成沉淀,用来制备纳米粒子。反应的产物一般是氢氧化物或水合物。因为原料是水解反应的对象是金属盐和水,

8、所以如果能高度精制金属盐,就很容易得到高纯度的纳米粒子。常用的原料有:氯化物、硫酸盐、硝酸盐、氨盐等无机盐以及金属醇盐。据此可将水解沉淀法分为无机盐水解法和金属醇盐水解法,无机盐水解法: 其原理是通过配置无机盐的水合物,控制其水解条件,合成单分散性的球、立方体等形状的纳米粒子。例如对钛盐溶液的水解可以使其沉淀,合成球状的单分散形态的二氧化钛纳米粒子。通过水解三价铁盐溶液,可以得Fe2O3纳米粒子。,液相反应法合成纳米粒子水热法,水热过程是指在高温、高压下在水、水溶液或蒸气等流体中所进行有关化学反应的总称。水热条件能加速离子反应和促进水解反应。在常温常压下一些从热力学分析看可以进行的反应,往往因

9、反应速度极慢,以至于在实际上没有价值。但在水热条件下却可能使反应得以实现。水热反应有以下几种类型: 1、水热氧化: mM + nH2O MmOn + H2 2、水热沉淀: KF + MnCl2 KMnF2 3、水热合成: FeTiO3 + KOH K2On.TiO2 4、水热还原: MexOy + yH2 xMe + yH2O 5、水热分解: ZrSiO4 + NaOH ZrO2 + Na2SiO3 6、水热结晶: Al(OH)3 Al2O3.H2O,液相反应法合成纳米粒子溶胶凝胶法,其基本原理是:将金属醇盐或无机盐经水解直接形成溶胶或经解凝形成溶胶,然后使溶质聚合凝胶化,再将凝胶干燥、焙烧去

10、除有机成分,最后得到无机材料。,纳米薄膜制备方法概述,纳米薄膜可分为:单分子膜;由纳米粒子组成(或堆砌而成)的薄膜;纳米粒子间有较多空隙或无序原子或另一种材料的薄膜等。 LB技术Langmuir-Blodgett (LB)膜是一种分子有序排列的有机超薄膜,LB 膜技术是一种可以在分子水平上精确控制薄膜厚度和分子结构的制膜技术。这种技术是本世纪二三十年代由美国科学家I. Langmuir 及其学生K. Blodgett 建立的一种单分子膜制备沉积技术,即通过压缩分散在气液界面上的两亲性物质使其形成紧密有序的单分子膜,并将其沉积到基片上。LB 膜是目前人们所能制备的最缀密、缺陷最少的超分子薄膜,能

11、在分子水平上保持分子的有序排列,厚度可控,能在1 100nm 之间形成均一的超薄膜,且制备要求条件低,容易实现大尺寸范围的规模化组装。,自组装技术:分子自组装就是分子自发、有序地以非共价键作用力形成分子聚集体的过程。 物理气相沉积 MBE技术: 分子束外延(Molecular Beam Epitaxy)是一种新的晶体生长技术,简记为MBE。主要研究不同结构或不同材料的晶体和超晶格的生长。其方法是将半导体衬底放置在超高真空腔体中,和将需要生长的单晶物质按元素的不同分别放在喷射炉中(也在腔体内),由分别加热到相应温度的各元素喷射出的分子流能在上述衬底上生长出极薄的(可薄至单原子层水平)单晶体和几种

12、物质交替的超晶格结构。该法生长温度(相对较)低,能严格控制外延层的层厚-组分和掺杂浓度,但系统复杂,生长速度慢,生长面积也受到一定限制。,化学气相沉积,Fig. 1: Schematical set up of an MBE growth chamber,自组装技术,分子自组装(Selfassembly,SA)技术是近二十年来微观分子设计领域的研究热点。它是指在热力学平衡条件下,分子与分子或分子中某一片段与另一片段之间利用分子识别,相互通过分子间大量弱的非共价键作用力,自发连接成具有特定排列顺序、结构稳定的分子聚集体的过程。这里的“弱非共价键作用力”系指氢键、范德华力、静电力、疏水作用力、-堆

13、积作用、阳离子-吸附作用等。并不是所有的分子都能够发生自组装过程,,物理气相沉积技术,物理气相沉积(PVD)方法作为一类常规的薄膜制备手段被广泛的应用于纳米薄膜的制备,包括蒸镀、电子束蒸镀、溅射等。,化学气相沉积技术,化学气相沉积(CVD)方法目前被广泛的应用于纳米薄膜材料的制备,主要用于制备半导体、氧化物、氮化物、碳化物纳米薄膜。CVD法可分为常压CVD;低压CVD;热CVD;等离子CVD;间隙CVD;激光CVD;超声CVD等等。,溶胶凝胶法,溶胶凝胶法是从金属的有机或无机化合物的溶液出发,在溶液中通过化合物的加水分解、聚合,把溶液制成溶有金属氧化物微粒子的溶胶液,进一步发生反应发生凝胶化,

14、再把凝胶加热,可制成非晶体玻璃、多晶体陶瓷等通过旋涂,可制成纳米薄膜。,PVD、CVD、SolGel方法比较,模板法合成纳米材料,大多数纳米材料的化学合成方法涉及到原子、离子或分子自气相或液相析出的凝聚反应,涉及到从分散的原子或分子逐渐聚集、长大的生长过程。以液相沉淀反应为例,颗粒的形成一般可以分为两个阶段。第一阶段是晶核的形成;第二阶段是晶核生长。颗粒的微结构、尺寸及其分布由反应体系的本质及反应的动力学过程所决定。可想而知,要制备粒径均一、结构相同的纳米颗粒的难度有多大。这相当于让烧杯中天文数字的原子同时形成大小一样的晶核,并同时长大到相同的尺寸。而且还要考虑颗粒间的团聚问题,因为团聚是使纳

15、米颗粒的表面能降低的自发过程。因此,为了得到尺寸可控、无团聚的纳米颗粒,必须找到“窍门”,来有效地干预化学反应的进程。,模板合成技术便是化学家们找到的“窍门”。模板合成的原理实际上非常简单。设想存在一个纳米尺寸的笼子(纳米尺寸的反应器),让原子的成核和生长在该“纳米反应器”中进行。在反应充分进行后,“纳米反应器”的大小和形状就决定了作为产物的纳米材料的尺寸和形状。无数多个“纳米反应器”的集合就是模板合成技术中的“模板”。,模板的分类,模板大致可以分为两类 软模板 和 硬模板 硬模板有多孔氧化铝、介孔沸石、蛋白、MCM41、纳米管、多孔Si模板、金属模板以及经过特殊处理的多孔高分子薄膜等。软模板则常常是由表面活性剂分子聚集而成的胶团、反胶团、囊泡等。二者的共性是都能提供一个有限大小的反应空间,区别在于前者提供的是静态的孔道,物质只能从开口处进入孔道内部,而后者提供的则是处于动态平衡的空腔,物质可以透过腔壁扩散进出。,

展开阅读全文
相关资源
猜你喜欢
相关搜索
资源标签

当前位置:首页 > 经济财会 > 贸易

本站链接:文库   一言   我酷   合作


客服QQ:2549714901微博号:道客多多官方知乎号:道客多多

经营许可证编号: 粤ICP备2021046453号世界地图

道客多多©版权所有2020-2025营业执照举报