1、,6.2 线性规划,例1 若点P(m,3)到直线4x3y10的距离为4,且点P在不等式2xy3表示的平面区域内,则m_.分析:如果点P在二元一次不等式AxByC0(A2B20)表示的平面区域内,则点P的坐标满足此不等式,题型一,题型二,利用图解法解决线性规划问题的一般步骤(1)作出可行域将约束条件中的每一个不等式所表示的平面区域作出,找出其公共部分(2)作出目标函数的等值线(3)确定最优解(一)在可行域内平行移动目标函数等值线,最先通过或最后通过的顶点便是最优解对应的点,从而确定最优解(二)利用围成可行域的直线的斜率来判断若围成可行域的直线l1、l2、ln的斜率分别为k1k2kn,而且目标函数
2、的直线的斜率为k,则当kik0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴上截距最小时,z值最小;当B0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大,题型三 含参问题,题型四,解线性规划问题的关键步骤是在图上完成的,所以作图应尽可能精确,图上操作尽可能规范求最优解时,若没有特殊要求,一般为边界交点若实际问题要求的最优解是整数解而我们利用图解法得到的解为非整数解,应作适当调整其方法应以与线性目标函数直线的距离为依据,在直线附近寻求与直线距离最近的整点,但必须是在可行域内寻找. 但考虑到作图毕竟还是会有误差,假若图上的最优点并不明显易辨时,应将最优解附近的整点都找出来,然后逐一检查,以“验明正身”,